| Step | Hyp | Ref
| Expression |
| 1 | | eulerth.1 |
. . . . . 6
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) |
| 2 | | eulerth.2 |
. . . . . 6
⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} |
| 3 | | eulerth.4 |
. . . . . 6
⊢ (𝜑 → 𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆) |
| 4 | 1, 2, 3 | eulerthlema 12398 |
. . . . 5
⊢ (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) |
| 5 | 1 | simp1d 1011 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 6 | 1 | simp2d 1012 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 7 | 5 | phicld 12386 |
. . . . . . . . 9
⊢ (𝜑 → (ϕ‘𝑁) ∈
ℕ) |
| 8 | 7 | nnnn0d 9302 |
. . . . . . . 8
⊢ (𝜑 → (ϕ‘𝑁) ∈
ℕ0) |
| 9 | | zexpcl 10646 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧
(ϕ‘𝑁) ∈
ℕ0) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ) |
| 10 | 6, 8, 9 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → (𝐴↑(ϕ‘𝑁)) ∈ ℤ) |
| 11 | | 1zzd 9353 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℤ) |
| 12 | 7 | nnzd 9447 |
. . . . . . . . 9
⊢ (𝜑 → (ϕ‘𝑁) ∈
ℤ) |
| 13 | 11, 12 | fzfigd 10523 |
. . . . . . . 8
⊢ (𝜑 → (1...(ϕ‘𝑁)) ∈ Fin) |
| 14 | | ssrab2 3268 |
. . . . . . . . . . 11
⊢ {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁) |
| 15 | 2, 14 | eqsstri 3215 |
. . . . . . . . . 10
⊢ 𝑆 ⊆ (0..^𝑁) |
| 16 | | fzo0ssnn0 10291 |
. . . . . . . . . . 11
⊢
(0..^𝑁) ⊆
ℕ0 |
| 17 | | nn0ssz 9344 |
. . . . . . . . . . 11
⊢
ℕ0 ⊆ ℤ |
| 18 | 16, 17 | sstri 3192 |
. . . . . . . . . 10
⊢
(0..^𝑁) ⊆
ℤ |
| 19 | 15, 18 | sstri 3192 |
. . . . . . . . 9
⊢ 𝑆 ⊆
ℤ |
| 20 | | f1of 5504 |
. . . . . . . . . . 11
⊢ (𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆 → 𝐹:(1...(ϕ‘𝑁))⟶𝑆) |
| 21 | 3, 20 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:(1...(ϕ‘𝑁))⟶𝑆) |
| 22 | 21 | ffvelcdmda 5697 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹‘𝑥) ∈ 𝑆) |
| 23 | 19, 22 | sselid 3181 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹‘𝑥) ∈ ℤ) |
| 24 | 13, 23 | fprodzcl 11774 |
. . . . . . 7
⊢ (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥) ∈ ℤ) |
| 25 | 10, 24 | zmulcld 9454 |
. . . . . 6
⊢ (𝜑 → ((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) ∈ ℤ) |
| 26 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑧 = (◡𝐹‘((𝐴 · (𝐹‘𝑥)) mod 𝑁)) → (𝐹‘𝑧) = (𝐹‘(◡𝐹‘((𝐴 · (𝐹‘𝑥)) mod 𝑁)))) |
| 27 | | eqid 2196 |
. . . . . . . . . 10
⊢ (◡𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁))) = (◡𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁))) |
| 28 | 1, 2, 3, 27 | eulerthlemh 12399 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁))):(1...(ϕ‘𝑁))–1-1-onto→(1...(ϕ‘𝑁))) |
| 29 | | eqid 2196 |
. . . . . . . . . . . . 13
⊢
(1...(ϕ‘𝑁)) = (1...(ϕ‘𝑁)) |
| 30 | | fveq2 5558 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑢 → (𝐹‘𝑣) = (𝐹‘𝑢)) |
| 31 | 30 | oveq2d 5938 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑢 → (𝐴 · (𝐹‘𝑣)) = (𝐴 · (𝐹‘𝑢))) |
| 32 | 31 | oveq1d 5937 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑢 → ((𝐴 · (𝐹‘𝑣)) mod 𝑁) = ((𝐴 · (𝐹‘𝑢)) mod 𝑁)) |
| 33 | 32 | cbvmptv 4129 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑣)) mod 𝑁)) = (𝑢 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑢)) mod 𝑁)) |
| 34 | 1, 2, 29, 3, 33 | eulerthlem1 12395 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑣)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆) |
| 35 | | fveq2 5558 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑦 → (𝐹‘𝑣) = (𝐹‘𝑦)) |
| 36 | 35 | oveq2d 5938 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑦 → (𝐴 · (𝐹‘𝑣)) = (𝐴 · (𝐹‘𝑦))) |
| 37 | 36 | oveq1d 5937 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑦 → ((𝐴 · (𝐹‘𝑣)) mod 𝑁) = ((𝐴 · (𝐹‘𝑦)) mod 𝑁)) |
| 38 | 37 | cbvmptv 4129 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑣)) mod 𝑁)) = (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁)) |
| 39 | 38 | feq1i 5400 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑣)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆 ↔ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆) |
| 40 | 34, 39 | sylib 122 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆) |
| 41 | | fvco3 5632 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → ((◡𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁)))‘𝑥) = (◡𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁))‘𝑥))) |
| 42 | 40, 41 | sylan 283 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → ((◡𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁)))‘𝑥) = (◡𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁))‘𝑥))) |
| 43 | | eqid 2196 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁)) = (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁)) |
| 44 | | fveq2 5558 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
| 45 | 44 | oveq2d 5938 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (𝐴 · (𝐹‘𝑦)) = (𝐴 · (𝐹‘𝑥))) |
| 46 | 45 | oveq1d 5937 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → ((𝐴 · (𝐹‘𝑦)) mod 𝑁) = ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) |
| 47 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑥 ∈ (1...(ϕ‘𝑁))) |
| 48 | 6 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → 𝐴 ∈ ℤ) |
| 49 | 48, 23 | zmulcld 9454 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐴 · (𝐹‘𝑥)) ∈ ℤ) |
| 50 | 5 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑁 ∈ ℕ) |
| 51 | | zmodfzo 10439 |
. . . . . . . . . . . . 13
⊢ (((𝐴 · (𝐹‘𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ (0..^𝑁)) |
| 52 | 49, 50, 51 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ (0..^𝑁)) |
| 53 | 43, 46, 47, 52 | fvmptd3 5655 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁))‘𝑥) = ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) |
| 54 | 53 | fveq2d 5562 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → (◡𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁))‘𝑥)) = (◡𝐹‘((𝐴 · (𝐹‘𝑥)) mod 𝑁))) |
| 55 | 42, 54 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → ((◡𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁)))‘𝑥) = (◡𝐹‘((𝐴 · (𝐹‘𝑥)) mod 𝑁))) |
| 56 | 21 | ffvelcdmda 5697 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹‘𝑧) ∈ 𝑆) |
| 57 | 19, 56 | sselid 3181 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹‘𝑧) ∈ ℤ) |
| 58 | 57 | zcnd 9449 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹‘𝑧) ∈ ℂ) |
| 59 | 26, 13, 28, 55, 58 | fprodf1o 11753 |
. . . . . . . 8
⊢ (𝜑 → ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑧) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘(◡𝐹‘((𝐴 · (𝐹‘𝑥)) mod 𝑁)))) |
| 60 | 3 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → 𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆) |
| 61 | | modgcd 12158 |
. . . . . . . . . . . . 13
⊢ (((𝐴 · (𝐹‘𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹‘𝑥)) gcd 𝑁)) |
| 62 | 49, 50, 61 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹‘𝑥)) gcd 𝑁)) |
| 63 | 50 | nnzd 9447 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑁 ∈ ℤ) |
| 64 | 63, 49 | gcdcomd 12141 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐴 · (𝐹‘𝑥))) = ((𝐴 · (𝐹‘𝑥)) gcd 𝑁)) |
| 65 | 5 | nnzd 9447 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 66 | 6, 65 | gcdcomd 12141 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴 gcd 𝑁) = (𝑁 gcd 𝐴)) |
| 67 | 1 | simp3d 1013 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴 gcd 𝑁) = 1) |
| 68 | 66, 67 | eqtr3d 2231 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁 gcd 𝐴) = 1) |
| 69 | 68 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd 𝐴) = 1) |
| 70 | 23, 63 | gcdcomd 12141 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹‘𝑥) gcd 𝑁) = (𝑁 gcd (𝐹‘𝑥))) |
| 71 | | oveq1 5929 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝐹‘𝑥) → (𝑦 gcd 𝑁) = ((𝐹‘𝑥) gcd 𝑁)) |
| 72 | 71 | eqeq1d 2205 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝐹‘𝑥) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹‘𝑥) gcd 𝑁) = 1)) |
| 73 | 72, 2 | elrab2 2923 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑥) ∈ 𝑆 ↔ ((𝐹‘𝑥) ∈ (0..^𝑁) ∧ ((𝐹‘𝑥) gcd 𝑁) = 1)) |
| 74 | 22, 73 | sylib 122 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹‘𝑥) ∈ (0..^𝑁) ∧ ((𝐹‘𝑥) gcd 𝑁) = 1)) |
| 75 | 74 | simprd 114 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹‘𝑥) gcd 𝑁) = 1) |
| 76 | 70, 75 | eqtr3d 2231 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐹‘𝑥)) = 1) |
| 77 | | rpmul 12266 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐹‘𝑥) ∈ ℤ) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹‘𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹‘𝑥))) = 1)) |
| 78 | 63, 48, 23, 77 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹‘𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹‘𝑥))) = 1)) |
| 79 | 69, 76, 78 | mp2and 433 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐴 · (𝐹‘𝑥))) = 1) |
| 80 | 62, 64, 79 | 3eqtr2d 2235 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = 1) |
| 81 | | oveq1 5929 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((𝐴 · (𝐹‘𝑥)) mod 𝑁) → (𝑦 gcd 𝑁) = (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁)) |
| 82 | 81 | eqeq1d 2205 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((𝐴 · (𝐹‘𝑥)) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = 1)) |
| 83 | 82, 2 | elrab2 2923 |
. . . . . . . . . . 11
⊢ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ 𝑆 ↔ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = 1)) |
| 84 | 52, 80, 83 | sylanbrc 417 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ 𝑆) |
| 85 | | f1ocnvfv2 5825 |
. . . . . . . . . 10
⊢ ((𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆 ∧ ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ 𝑆) → (𝐹‘(◡𝐹‘((𝐴 · (𝐹‘𝑥)) mod 𝑁))) = ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) |
| 86 | 60, 84, 85 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹‘(◡𝐹‘((𝐴 · (𝐹‘𝑥)) mod 𝑁))) = ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) |
| 87 | 86 | prodeq2dv 11731 |
. . . . . . . 8
⊢ (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘(◡𝐹‘((𝐴 · (𝐹‘𝑥)) mod 𝑁))) = ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁)) |
| 88 | 59, 87 | eqtr2d 2230 |
. . . . . . 7
⊢ (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁) = ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑧)) |
| 89 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) |
| 90 | 89 | cbvprodv 11724 |
. . . . . . . 8
⊢
∏𝑧 ∈
(1...(ϕ‘𝑁))(𝐹‘𝑧) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥) |
| 91 | 90, 24 | eqeltrid 2283 |
. . . . . . 7
⊢ (𝜑 → ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑧) ∈ ℤ) |
| 92 | 88, 91 | eqeltrd 2273 |
. . . . . 6
⊢ (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ ℤ) |
| 93 | | moddvds 11964 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) ∈ ℤ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ ℤ) → ((((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁) ↔ 𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁)))) |
| 94 | 5, 25, 92, 93 | syl3anc 1249 |
. . . . 5
⊢ (𝜑 → ((((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁) ↔ 𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁)))) |
| 95 | 4, 94 | mpbid 147 |
. . . 4
⊢ (𝜑 → 𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁))) |
| 96 | 24 | zcnd 9449 |
. . . . . . . 8
⊢ (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥) ∈ ℂ) |
| 97 | 96 | mulid2d 8045 |
. . . . . . 7
⊢ (𝜑 → (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) |
| 98 | 90, 88, 97 | 3eqtr4a 2255 |
. . . . . 6
⊢ (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁) = (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥))) |
| 99 | 98 | oveq2d 5938 |
. . . . 5
⊢ (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)))) |
| 100 | 10 | zcnd 9449 |
. . . . . 6
⊢ (𝜑 → (𝐴↑(ϕ‘𝑁)) ∈ ℂ) |
| 101 | | ax-1cn 7972 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 102 | | subdir 8412 |
. . . . . . 7
⊢ (((𝐴↑(ϕ‘𝑁)) ∈ ℂ ∧ 1 ∈
ℂ ∧ ∏𝑥
∈ (1...(ϕ‘𝑁))(𝐹‘𝑥) ∈ ℂ) → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)))) |
| 103 | 101, 102 | mp3an2 1336 |
. . . . . 6
⊢ (((𝐴↑(ϕ‘𝑁)) ∈ ℂ ∧
∏𝑥 ∈
(1...(ϕ‘𝑁))(𝐹‘𝑥) ∈ ℂ) → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)))) |
| 104 | 100, 96, 103 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)))) |
| 105 | 10, 11 | zsubcld 9453 |
. . . . . . 7
⊢ (𝜑 → ((𝐴↑(ϕ‘𝑁)) − 1) ∈
ℤ) |
| 106 | 105 | zcnd 9449 |
. . . . . 6
⊢ (𝜑 → ((𝐴↑(ϕ‘𝑁)) − 1) ∈
ℂ) |
| 107 | 106, 96 | mulcomd 8048 |
. . . . 5
⊢ (𝜑 → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) = (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1))) |
| 108 | 99, 104, 107 | 3eqtr2d 2235 |
. . . 4
⊢ (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁)) = (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1))) |
| 109 | 95, 108 | breqtrd 4059 |
. . 3
⊢ (𝜑 → 𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1))) |
| 110 | 1, 2, 3 | eulerthlemrprm 12397 |
. . 3
⊢ (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) = 1) |
| 111 | | coprmdvds 12260 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧
∏𝑥 ∈
(1...(ϕ‘𝑁))(𝐹‘𝑥) ∈ ℤ ∧ ((𝐴↑(ϕ‘𝑁)) − 1) ∈ ℤ) → ((𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)) ∧ (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
| 112 | 65, 24, 105, 111 | syl3anc 1249 |
. . 3
⊢ (𝜑 → ((𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)) ∧ (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
| 113 | 109, 110,
112 | mp2and 433 |
. 2
⊢ (𝜑 → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)) |
| 114 | | 1z 9352 |
. . . 4
⊢ 1 ∈
ℤ |
| 115 | | moddvds 11964 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ ∧ 1 ∈
ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
| 116 | 114, 115 | mp3an3 1337 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ) →
(((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
| 117 | 5, 10, 116 | syl2anc 411 |
. 2
⊢ (𝜑 → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
| 118 | 113, 117 | mpbird 167 |
1
⊢ (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) |