ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlemth GIF version

Theorem eulerthlemth 12164
Description: Lemma for eulerth 12165. The result. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
Hypotheses
Ref Expression
eulerth.1 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
eulerth.2 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
eulerth.4 (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
Assertion
Ref Expression
eulerthlemth (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑁   𝜑,𝑦
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem eulerthlemth
Dummy variables 𝑢 𝑣 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerth.1 . . . . . 6 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
2 eulerth.2 . . . . . 6 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
3 eulerth.4 . . . . . 6 (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
41, 2, 3eulerthlema 12162 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) mod 𝑁))
51simp1d 999 . . . . . 6 (𝜑𝑁 ∈ ℕ)
61simp2d 1000 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
75phicld 12150 . . . . . . . . 9 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
87nnnn0d 9167 . . . . . . . 8 (𝜑 → (ϕ‘𝑁) ∈ ℕ0)
9 zexpcl 10470 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑁) ∈ ℕ0) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ)
106, 8, 9syl2anc 409 . . . . . . 7 (𝜑 → (𝐴↑(ϕ‘𝑁)) ∈ ℤ)
11 1zzd 9218 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
127nnzd 9312 . . . . . . . . 9 (𝜑 → (ϕ‘𝑁) ∈ ℤ)
1311, 12fzfigd 10366 . . . . . . . 8 (𝜑 → (1...(ϕ‘𝑁)) ∈ Fin)
14 ssrab2 3227 . . . . . . . . . . 11 {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁)
152, 14eqsstri 3174 . . . . . . . . . 10 𝑆 ⊆ (0..^𝑁)
16 fzo0ssnn0 10150 . . . . . . . . . . 11 (0..^𝑁) ⊆ ℕ0
17 nn0ssz 9209 . . . . . . . . . . 11 0 ⊆ ℤ
1816, 17sstri 3151 . . . . . . . . . 10 (0..^𝑁) ⊆ ℤ
1915, 18sstri 3151 . . . . . . . . 9 𝑆 ⊆ ℤ
20 f1of 5432 . . . . . . . . . . 11 (𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆𝐹:(1...(ϕ‘𝑁))⟶𝑆)
213, 20syl 14 . . . . . . . . . 10 (𝜑𝐹:(1...(ϕ‘𝑁))⟶𝑆)
2221ffvelrnda 5620 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑥) ∈ 𝑆)
2319, 22sselid 3140 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑥) ∈ ℤ)
2413, 23fprodzcl 11550 . . . . . . 7 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℤ)
2510, 24zmulcld 9319 . . . . . 6 (𝜑 → ((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) ∈ ℤ)
26 fveq2 5486 . . . . . . . . 9 (𝑧 = (𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁)) → (𝐹𝑧) = (𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))))
27 eqid 2165 . . . . . . . . . 10 (𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))) = (𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))
281, 2, 3, 27eulerthlemh 12163 . . . . . . . . 9 (𝜑 → (𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))):(1...(ϕ‘𝑁))–1-1-onto→(1...(ϕ‘𝑁)))
29 eqid 2165 . . . . . . . . . . . . 13 (1...(ϕ‘𝑁)) = (1...(ϕ‘𝑁))
30 fveq2 5486 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
3130oveq2d 5858 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (𝐴 · (𝐹𝑣)) = (𝐴 · (𝐹𝑢)))
3231oveq1d 5857 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → ((𝐴 · (𝐹𝑣)) mod 𝑁) = ((𝐴 · (𝐹𝑢)) mod 𝑁))
3332cbvmptv 4078 . . . . . . . . . . . . 13 (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)) = (𝑢 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑢)) mod 𝑁))
341, 2, 29, 3, 33eulerthlem1 12159 . . . . . . . . . . . 12 (𝜑 → (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆)
35 fveq2 5486 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
3635oveq2d 5858 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → (𝐴 · (𝐹𝑣)) = (𝐴 · (𝐹𝑦)))
3736oveq1d 5857 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → ((𝐴 · (𝐹𝑣)) mod 𝑁) = ((𝐴 · (𝐹𝑦)) mod 𝑁))
3837cbvmptv 4078 . . . . . . . . . . . . 13 (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)) = (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))
3938feq1i 5330 . . . . . . . . . . . 12 ((𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆 ↔ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆)
4034, 39sylib 121 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆)
41 fvco3 5557 . . . . . . . . . . 11 (((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))‘𝑥) = (𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥)))
4240, 41sylan 281 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))‘𝑥) = (𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥)))
43 eqid 2165 . . . . . . . . . . . 12 (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)) = (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))
44 fveq2 5486 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
4544oveq2d 5858 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝐴 · (𝐹𝑦)) = (𝐴 · (𝐹𝑥)))
4645oveq1d 5857 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝐴 · (𝐹𝑦)) mod 𝑁) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
47 simpr 109 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑥 ∈ (1...(ϕ‘𝑁)))
486adantr 274 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝐴 ∈ ℤ)
4948, 23zmulcld 9319 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐴 · (𝐹𝑥)) ∈ ℤ)
505adantr 274 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑁 ∈ ℕ)
51 zmodfzo 10282 . . . . . . . . . . . . 13 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
5249, 50, 51syl2anc 409 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
5343, 46, 47, 52fvmptd3 5579 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
5453fveq2d 5490 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥)) = (𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁)))
5542, 54eqtrd 2198 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))‘𝑥) = (𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁)))
5621ffvelrnda 5620 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑧) ∈ 𝑆)
5719, 56sselid 3140 . . . . . . . . . 10 ((𝜑𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑧) ∈ ℤ)
5857zcnd 9314 . . . . . . . . 9 ((𝜑𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑧) ∈ ℂ)
5926, 13, 28, 55, 58fprodf1o 11529 . . . . . . . 8 (𝜑 → ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))))
603adantr 274 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
61 modgcd 11924 . . . . . . . . . . . . 13 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
6249, 50, 61syl2anc 409 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
6350nnzd 9312 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑁 ∈ ℤ)
6463, 49gcdcomd 11907 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
655nnzd 9312 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
666, 65gcdcomd 11907 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 gcd 𝑁) = (𝑁 gcd 𝐴))
671simp3d 1001 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 gcd 𝑁) = 1)
6866, 67eqtr3d 2200 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 gcd 𝐴) = 1)
6968adantr 274 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd 𝐴) = 1)
7023, 63gcdcomd 11907 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹𝑥) gcd 𝑁) = (𝑁 gcd (𝐹𝑥)))
71 oveq1 5849 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐹𝑥) → (𝑦 gcd 𝑁) = ((𝐹𝑥) gcd 𝑁))
7271eqeq1d 2174 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐹𝑥) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹𝑥) gcd 𝑁) = 1))
7372, 2elrab2 2885 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ 𝑆 ↔ ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
7422, 73sylib 121 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
7574simprd 113 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹𝑥) gcd 𝑁) = 1)
7670, 75eqtr3d 2200 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐹𝑥)) = 1)
77 rpmul 12030 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
7863, 48, 23, 77syl3anc 1228 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
7969, 76, 78mp2and 430 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1)
8062, 64, 793eqtr2d 2204 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1)
81 oveq1 5849 . . . . . . . . . . . . 13 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → (𝑦 gcd 𝑁) = (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁))
8281eqeq1d 2174 . . . . . . . . . . . 12 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
8382, 2elrab2 2885 . . . . . . . . . . 11 (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
8452, 80, 83sylanbrc 414 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆)
85 f1ocnvfv2 5746 . . . . . . . . . 10 ((𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆 ∧ ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆) → (𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
8660, 84, 85syl2anc 409 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
8786prodeq2dv 11507 . . . . . . . 8 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))) = ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁))
8859, 87eqtr2d 2199 . . . . . . 7 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) = ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧))
89 fveq2 5486 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
9089cbvprodv 11500 . . . . . . . 8 𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)
9190, 24eqeltrid 2253 . . . . . . 7 (𝜑 → ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧) ∈ ℤ)
9288, 91eqeltrd 2243 . . . . . 6 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ ℤ)
93 moddvds 11739 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) ∈ ℤ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ ℤ) → ((((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) mod 𝑁) ↔ 𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁))))
945, 25, 92, 93syl3anc 1228 . . . . 5 (𝜑 → ((((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) mod 𝑁) ↔ 𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁))))
954, 94mpbid 146 . . . 4 (𝜑𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁)))
9624zcnd 9314 . . . . . . . 8 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℂ)
9796mulid2d 7917 . . . . . . 7 (𝜑 → (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))
9890, 88, 973eqtr4a 2225 . . . . . 6 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) = (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)))
9998oveq2d 5858 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
10010zcnd 9314 . . . . . 6 (𝜑 → (𝐴↑(ϕ‘𝑁)) ∈ ℂ)
101 ax-1cn 7846 . . . . . . 7 1 ∈ ℂ
102 subdir 8284 . . . . . . 7 (((𝐴↑(ϕ‘𝑁)) ∈ ℂ ∧ 1 ∈ ℂ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℂ) → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
103101, 102mp3an2 1315 . . . . . 6 (((𝐴↑(ϕ‘𝑁)) ∈ ℂ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℂ) → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
104100, 96, 103syl2anc 409 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
10510, 11zsubcld 9318 . . . . . . 7 (𝜑 → ((𝐴↑(ϕ‘𝑁)) − 1) ∈ ℤ)
106105zcnd 9314 . . . . . 6 (𝜑 → ((𝐴↑(ϕ‘𝑁)) − 1) ∈ ℂ)
107106, 96mulcomd 7920 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)))
10899, 104, 1073eqtr2d 2204 . . . 4 (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁)) = (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)))
10995, 108breqtrd 4008 . . 3 (𝜑𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)))
1101, 2, 3eulerthlemrprm 12161 . . 3 (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1)
111 coprmdvds 12024 . . . 4 ((𝑁 ∈ ℤ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℤ ∧ ((𝐴↑(ϕ‘𝑁)) − 1) ∈ ℤ) → ((𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)) ∧ (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
11265, 24, 105, 111syl3anc 1228 . . 3 (𝜑 → ((𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)) ∧ (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
113109, 110, 112mp2and 430 . 2 (𝜑𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))
114 1z 9217 . . . 4 1 ∈ ℤ
115 moddvds 11739 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
116114, 115mp3an3 1316 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
1175, 10, 116syl2anc 409 . 2 (𝜑 → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
118113, 117mpbird 166 1 (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  {crab 2448   class class class wbr 3982  cmpt 4043  ccnv 4603  ccom 4608  wf 5184  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  cc 7751  0cc0 7753  1c1 7754   · cmul 7758  cmin 8069  cn 8857  0cn0 9114  cz 9191  ...cfz 9944  ..^cfzo 10077   mod cmo 10257  cexp 10454  cprod 11491  cdvds 11727   gcd cgcd 11875  ϕcphi 12141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492  df-dvds 11728  df-gcd 11876  df-phi 12143
This theorem is referenced by:  eulerth  12165
  Copyright terms: Public domain W3C validator