ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlemth GIF version

Theorem eulerthlemth 12263
Description: Lemma for eulerth 12264. The result. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
Hypotheses
Ref Expression
eulerth.1 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
eulerth.2 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
eulerth.4 (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
Assertion
Ref Expression
eulerthlemth (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑁   𝜑,𝑦
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem eulerthlemth
Dummy variables 𝑢 𝑣 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerth.1 . . . . . 6 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
2 eulerth.2 . . . . . 6 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
3 eulerth.4 . . . . . 6 (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
41, 2, 3eulerthlema 12261 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) mod 𝑁))
51simp1d 1011 . . . . . 6 (𝜑𝑁 ∈ ℕ)
61simp2d 1012 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
75phicld 12249 . . . . . . . . 9 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
87nnnn0d 9258 . . . . . . . 8 (𝜑 → (ϕ‘𝑁) ∈ ℕ0)
9 zexpcl 10565 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑁) ∈ ℕ0) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ)
106, 8, 9syl2anc 411 . . . . . . 7 (𝜑 → (𝐴↑(ϕ‘𝑁)) ∈ ℤ)
11 1zzd 9309 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
127nnzd 9403 . . . . . . . . 9 (𝜑 → (ϕ‘𝑁) ∈ ℤ)
1311, 12fzfigd 10461 . . . . . . . 8 (𝜑 → (1...(ϕ‘𝑁)) ∈ Fin)
14 ssrab2 3255 . . . . . . . . . . 11 {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁)
152, 14eqsstri 3202 . . . . . . . . . 10 𝑆 ⊆ (0..^𝑁)
16 fzo0ssnn0 10244 . . . . . . . . . . 11 (0..^𝑁) ⊆ ℕ0
17 nn0ssz 9300 . . . . . . . . . . 11 0 ⊆ ℤ
1816, 17sstri 3179 . . . . . . . . . 10 (0..^𝑁) ⊆ ℤ
1915, 18sstri 3179 . . . . . . . . 9 𝑆 ⊆ ℤ
20 f1of 5480 . . . . . . . . . . 11 (𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆𝐹:(1...(ϕ‘𝑁))⟶𝑆)
213, 20syl 14 . . . . . . . . . 10 (𝜑𝐹:(1...(ϕ‘𝑁))⟶𝑆)
2221ffvelcdmda 5671 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑥) ∈ 𝑆)
2319, 22sselid 3168 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑥) ∈ ℤ)
2413, 23fprodzcl 11648 . . . . . . 7 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℤ)
2510, 24zmulcld 9410 . . . . . 6 (𝜑 → ((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) ∈ ℤ)
26 fveq2 5534 . . . . . . . . 9 (𝑧 = (𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁)) → (𝐹𝑧) = (𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))))
27 eqid 2189 . . . . . . . . . 10 (𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))) = (𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))
281, 2, 3, 27eulerthlemh 12262 . . . . . . . . 9 (𝜑 → (𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))):(1...(ϕ‘𝑁))–1-1-onto→(1...(ϕ‘𝑁)))
29 eqid 2189 . . . . . . . . . . . . 13 (1...(ϕ‘𝑁)) = (1...(ϕ‘𝑁))
30 fveq2 5534 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
3130oveq2d 5911 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (𝐴 · (𝐹𝑣)) = (𝐴 · (𝐹𝑢)))
3231oveq1d 5910 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → ((𝐴 · (𝐹𝑣)) mod 𝑁) = ((𝐴 · (𝐹𝑢)) mod 𝑁))
3332cbvmptv 4114 . . . . . . . . . . . . 13 (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)) = (𝑢 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑢)) mod 𝑁))
341, 2, 29, 3, 33eulerthlem1 12258 . . . . . . . . . . . 12 (𝜑 → (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆)
35 fveq2 5534 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
3635oveq2d 5911 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → (𝐴 · (𝐹𝑣)) = (𝐴 · (𝐹𝑦)))
3736oveq1d 5910 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → ((𝐴 · (𝐹𝑣)) mod 𝑁) = ((𝐴 · (𝐹𝑦)) mod 𝑁))
3837cbvmptv 4114 . . . . . . . . . . . . 13 (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)) = (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))
3938feq1i 5377 . . . . . . . . . . . 12 ((𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆 ↔ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆)
4034, 39sylib 122 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆)
41 fvco3 5607 . . . . . . . . . . 11 (((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))‘𝑥) = (𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥)))
4240, 41sylan 283 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))‘𝑥) = (𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥)))
43 eqid 2189 . . . . . . . . . . . 12 (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)) = (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))
44 fveq2 5534 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
4544oveq2d 5911 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝐴 · (𝐹𝑦)) = (𝐴 · (𝐹𝑥)))
4645oveq1d 5910 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝐴 · (𝐹𝑦)) mod 𝑁) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
47 simpr 110 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑥 ∈ (1...(ϕ‘𝑁)))
486adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝐴 ∈ ℤ)
4948, 23zmulcld 9410 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐴 · (𝐹𝑥)) ∈ ℤ)
505adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑁 ∈ ℕ)
51 zmodfzo 10377 . . . . . . . . . . . . 13 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
5249, 50, 51syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
5343, 46, 47, 52fvmptd3 5629 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
5453fveq2d 5538 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥)) = (𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁)))
5542, 54eqtrd 2222 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))‘𝑥) = (𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁)))
5621ffvelcdmda 5671 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑧) ∈ 𝑆)
5719, 56sselid 3168 . . . . . . . . . 10 ((𝜑𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑧) ∈ ℤ)
5857zcnd 9405 . . . . . . . . 9 ((𝜑𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑧) ∈ ℂ)
5926, 13, 28, 55, 58fprodf1o 11627 . . . . . . . 8 (𝜑 → ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))))
603adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
61 modgcd 12023 . . . . . . . . . . . . 13 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
6249, 50, 61syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
6350nnzd 9403 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑁 ∈ ℤ)
6463, 49gcdcomd 12006 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
655nnzd 9403 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
666, 65gcdcomd 12006 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 gcd 𝑁) = (𝑁 gcd 𝐴))
671simp3d 1013 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 gcd 𝑁) = 1)
6866, 67eqtr3d 2224 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 gcd 𝐴) = 1)
6968adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd 𝐴) = 1)
7023, 63gcdcomd 12006 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹𝑥) gcd 𝑁) = (𝑁 gcd (𝐹𝑥)))
71 oveq1 5902 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐹𝑥) → (𝑦 gcd 𝑁) = ((𝐹𝑥) gcd 𝑁))
7271eqeq1d 2198 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐹𝑥) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹𝑥) gcd 𝑁) = 1))
7372, 2elrab2 2911 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ 𝑆 ↔ ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
7422, 73sylib 122 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
7574simprd 114 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹𝑥) gcd 𝑁) = 1)
7670, 75eqtr3d 2224 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐹𝑥)) = 1)
77 rpmul 12129 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
7863, 48, 23, 77syl3anc 1249 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
7969, 76, 78mp2and 433 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1)
8062, 64, 793eqtr2d 2228 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1)
81 oveq1 5902 . . . . . . . . . . . . 13 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → (𝑦 gcd 𝑁) = (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁))
8281eqeq1d 2198 . . . . . . . . . . . 12 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
8382, 2elrab2 2911 . . . . . . . . . . 11 (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
8452, 80, 83sylanbrc 417 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆)
85 f1ocnvfv2 5799 . . . . . . . . . 10 ((𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆 ∧ ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆) → (𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
8660, 84, 85syl2anc 411 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
8786prodeq2dv 11605 . . . . . . . 8 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))) = ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁))
8859, 87eqtr2d 2223 . . . . . . 7 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) = ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧))
89 fveq2 5534 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
9089cbvprodv 11598 . . . . . . . 8 𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)
9190, 24eqeltrid 2276 . . . . . . 7 (𝜑 → ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧) ∈ ℤ)
9288, 91eqeltrd 2266 . . . . . 6 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ ℤ)
93 moddvds 11837 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) ∈ ℤ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ ℤ) → ((((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) mod 𝑁) ↔ 𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁))))
945, 25, 92, 93syl3anc 1249 . . . . 5 (𝜑 → ((((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) mod 𝑁) ↔ 𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁))))
954, 94mpbid 147 . . . 4 (𝜑𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁)))
9624zcnd 9405 . . . . . . . 8 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℂ)
9796mulid2d 8005 . . . . . . 7 (𝜑 → (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))
9890, 88, 973eqtr4a 2248 . . . . . 6 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) = (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)))
9998oveq2d 5911 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
10010zcnd 9405 . . . . . 6 (𝜑 → (𝐴↑(ϕ‘𝑁)) ∈ ℂ)
101 ax-1cn 7933 . . . . . . 7 1 ∈ ℂ
102 subdir 8372 . . . . . . 7 (((𝐴↑(ϕ‘𝑁)) ∈ ℂ ∧ 1 ∈ ℂ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℂ) → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
103101, 102mp3an2 1336 . . . . . 6 (((𝐴↑(ϕ‘𝑁)) ∈ ℂ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℂ) → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
104100, 96, 103syl2anc 411 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
10510, 11zsubcld 9409 . . . . . . 7 (𝜑 → ((𝐴↑(ϕ‘𝑁)) − 1) ∈ ℤ)
106105zcnd 9405 . . . . . 6 (𝜑 → ((𝐴↑(ϕ‘𝑁)) − 1) ∈ ℂ)
107106, 96mulcomd 8008 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)))
10899, 104, 1073eqtr2d 2228 . . . 4 (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁)) = (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)))
10995, 108breqtrd 4044 . . 3 (𝜑𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)))
1101, 2, 3eulerthlemrprm 12260 . . 3 (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1)
111 coprmdvds 12123 . . . 4 ((𝑁 ∈ ℤ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℤ ∧ ((𝐴↑(ϕ‘𝑁)) − 1) ∈ ℤ) → ((𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)) ∧ (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
11265, 24, 105, 111syl3anc 1249 . . 3 (𝜑 → ((𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)) ∧ (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
113109, 110, 112mp2and 433 . 2 (𝜑𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))
114 1z 9308 . . . 4 1 ∈ ℤ
115 moddvds 11837 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
116114, 115mp3an3 1337 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
1175, 10, 116syl2anc 411 . 2 (𝜑 → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
118113, 117mpbird 167 1 (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  {crab 2472   class class class wbr 4018  cmpt 4079  ccnv 4643  ccom 4648  wf 5231  1-1-ontowf1o 5234  cfv 5235  (class class class)co 5895  cc 7838  0cc0 7840  1c1 7841   · cmul 7845  cmin 8157  cn 8948  0cn0 9205  cz 9282  ...cfz 10037  ..^cfzo 10171   mod cmo 10352  cexp 10549  cprod 11589  cdvds 11825   gcd cgcd 11974  ϕcphi 12240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958  ax-arch 7959  ax-caucvg 7960
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-irdg 6394  df-frec 6415  df-1o 6440  df-oadd 6444  df-er 6558  df-en 6766  df-dom 6767  df-fin 6768  df-sup 7012  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-n0 9206  df-z 9283  df-uz 9558  df-q 9649  df-rp 9683  df-fz 10038  df-fzo 10172  df-fl 10300  df-mod 10353  df-seqfrec 10476  df-exp 10550  df-ihash 10787  df-cj 10882  df-re 10883  df-im 10884  df-rsqrt 11038  df-abs 11039  df-clim 11318  df-proddc 11590  df-dvds 11826  df-gcd 11975  df-phi 12242
This theorem is referenced by:  eulerth  12264
  Copyright terms: Public domain W3C validator