ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlemth GIF version

Theorem eulerthlemth 12215
Description: Lemma for eulerth 12216. The result. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
Hypotheses
Ref Expression
eulerth.1 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
eulerth.2 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
eulerth.4 (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
Assertion
Ref Expression
eulerthlemth (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑁   𝜑,𝑦
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem eulerthlemth
Dummy variables 𝑢 𝑣 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerth.1 . . . . . 6 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
2 eulerth.2 . . . . . 6 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
3 eulerth.4 . . . . . 6 (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
41, 2, 3eulerthlema 12213 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) mod 𝑁))
51simp1d 1009 . . . . . 6 (𝜑𝑁 ∈ ℕ)
61simp2d 1010 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
75phicld 12201 . . . . . . . . 9 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
87nnnn0d 9218 . . . . . . . 8 (𝜑 → (ϕ‘𝑁) ∈ ℕ0)
9 zexpcl 10521 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑁) ∈ ℕ0) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ)
106, 8, 9syl2anc 411 . . . . . . 7 (𝜑 → (𝐴↑(ϕ‘𝑁)) ∈ ℤ)
11 1zzd 9269 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
127nnzd 9363 . . . . . . . . 9 (𝜑 → (ϕ‘𝑁) ∈ ℤ)
1311, 12fzfigd 10417 . . . . . . . 8 (𝜑 → (1...(ϕ‘𝑁)) ∈ Fin)
14 ssrab2 3240 . . . . . . . . . . 11 {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁)
152, 14eqsstri 3187 . . . . . . . . . 10 𝑆 ⊆ (0..^𝑁)
16 fzo0ssnn0 10201 . . . . . . . . . . 11 (0..^𝑁) ⊆ ℕ0
17 nn0ssz 9260 . . . . . . . . . . 11 0 ⊆ ℤ
1816, 17sstri 3164 . . . . . . . . . 10 (0..^𝑁) ⊆ ℤ
1915, 18sstri 3164 . . . . . . . . 9 𝑆 ⊆ ℤ
20 f1of 5457 . . . . . . . . . . 11 (𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆𝐹:(1...(ϕ‘𝑁))⟶𝑆)
213, 20syl 14 . . . . . . . . . 10 (𝜑𝐹:(1...(ϕ‘𝑁))⟶𝑆)
2221ffvelcdmda 5647 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑥) ∈ 𝑆)
2319, 22sselid 3153 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑥) ∈ ℤ)
2413, 23fprodzcl 11601 . . . . . . 7 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℤ)
2510, 24zmulcld 9370 . . . . . 6 (𝜑 → ((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) ∈ ℤ)
26 fveq2 5511 . . . . . . . . 9 (𝑧 = (𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁)) → (𝐹𝑧) = (𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))))
27 eqid 2177 . . . . . . . . . 10 (𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))) = (𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))
281, 2, 3, 27eulerthlemh 12214 . . . . . . . . 9 (𝜑 → (𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))):(1...(ϕ‘𝑁))–1-1-onto→(1...(ϕ‘𝑁)))
29 eqid 2177 . . . . . . . . . . . . 13 (1...(ϕ‘𝑁)) = (1...(ϕ‘𝑁))
30 fveq2 5511 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
3130oveq2d 5885 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (𝐴 · (𝐹𝑣)) = (𝐴 · (𝐹𝑢)))
3231oveq1d 5884 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → ((𝐴 · (𝐹𝑣)) mod 𝑁) = ((𝐴 · (𝐹𝑢)) mod 𝑁))
3332cbvmptv 4096 . . . . . . . . . . . . 13 (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)) = (𝑢 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑢)) mod 𝑁))
341, 2, 29, 3, 33eulerthlem1 12210 . . . . . . . . . . . 12 (𝜑 → (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆)
35 fveq2 5511 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
3635oveq2d 5885 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → (𝐴 · (𝐹𝑣)) = (𝐴 · (𝐹𝑦)))
3736oveq1d 5884 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → ((𝐴 · (𝐹𝑣)) mod 𝑁) = ((𝐴 · (𝐹𝑦)) mod 𝑁))
3837cbvmptv 4096 . . . . . . . . . . . . 13 (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)) = (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))
3938feq1i 5354 . . . . . . . . . . . 12 ((𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆 ↔ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆)
4034, 39sylib 122 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆)
41 fvco3 5583 . . . . . . . . . . 11 (((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))‘𝑥) = (𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥)))
4240, 41sylan 283 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))‘𝑥) = (𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥)))
43 eqid 2177 . . . . . . . . . . . 12 (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)) = (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))
44 fveq2 5511 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
4544oveq2d 5885 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝐴 · (𝐹𝑦)) = (𝐴 · (𝐹𝑥)))
4645oveq1d 5884 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝐴 · (𝐹𝑦)) mod 𝑁) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
47 simpr 110 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑥 ∈ (1...(ϕ‘𝑁)))
486adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝐴 ∈ ℤ)
4948, 23zmulcld 9370 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐴 · (𝐹𝑥)) ∈ ℤ)
505adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑁 ∈ ℕ)
51 zmodfzo 10333 . . . . . . . . . . . . 13 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
5249, 50, 51syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
5343, 46, 47, 52fvmptd3 5605 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
5453fveq2d 5515 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥)) = (𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁)))
5542, 54eqtrd 2210 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))‘𝑥) = (𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁)))
5621ffvelcdmda 5647 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑧) ∈ 𝑆)
5719, 56sselid 3153 . . . . . . . . . 10 ((𝜑𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑧) ∈ ℤ)
5857zcnd 9365 . . . . . . . . 9 ((𝜑𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑧) ∈ ℂ)
5926, 13, 28, 55, 58fprodf1o 11580 . . . . . . . 8 (𝜑 → ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))))
603adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
61 modgcd 11975 . . . . . . . . . . . . 13 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
6249, 50, 61syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
6350nnzd 9363 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑁 ∈ ℤ)
6463, 49gcdcomd 11958 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
655nnzd 9363 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
666, 65gcdcomd 11958 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 gcd 𝑁) = (𝑁 gcd 𝐴))
671simp3d 1011 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 gcd 𝑁) = 1)
6866, 67eqtr3d 2212 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 gcd 𝐴) = 1)
6968adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd 𝐴) = 1)
7023, 63gcdcomd 11958 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹𝑥) gcd 𝑁) = (𝑁 gcd (𝐹𝑥)))
71 oveq1 5876 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐹𝑥) → (𝑦 gcd 𝑁) = ((𝐹𝑥) gcd 𝑁))
7271eqeq1d 2186 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐹𝑥) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹𝑥) gcd 𝑁) = 1))
7372, 2elrab2 2896 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ 𝑆 ↔ ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
7422, 73sylib 122 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
7574simprd 114 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹𝑥) gcd 𝑁) = 1)
7670, 75eqtr3d 2212 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐹𝑥)) = 1)
77 rpmul 12081 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
7863, 48, 23, 77syl3anc 1238 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
7969, 76, 78mp2and 433 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1)
8062, 64, 793eqtr2d 2216 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1)
81 oveq1 5876 . . . . . . . . . . . . 13 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → (𝑦 gcd 𝑁) = (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁))
8281eqeq1d 2186 . . . . . . . . . . . 12 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
8382, 2elrab2 2896 . . . . . . . . . . 11 (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
8452, 80, 83sylanbrc 417 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆)
85 f1ocnvfv2 5773 . . . . . . . . . 10 ((𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆 ∧ ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆) → (𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
8660, 84, 85syl2anc 411 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
8786prodeq2dv 11558 . . . . . . . 8 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))) = ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁))
8859, 87eqtr2d 2211 . . . . . . 7 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) = ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧))
89 fveq2 5511 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
9089cbvprodv 11551 . . . . . . . 8 𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)
9190, 24eqeltrid 2264 . . . . . . 7 (𝜑 → ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧) ∈ ℤ)
9288, 91eqeltrd 2254 . . . . . 6 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ ℤ)
93 moddvds 11790 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) ∈ ℤ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ ℤ) → ((((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) mod 𝑁) ↔ 𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁))))
945, 25, 92, 93syl3anc 1238 . . . . 5 (𝜑 → ((((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) mod 𝑁) ↔ 𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁))))
954, 94mpbid 147 . . . 4 (𝜑𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁)))
9624zcnd 9365 . . . . . . . 8 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℂ)
9796mulid2d 7966 . . . . . . 7 (𝜑 → (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))
9890, 88, 973eqtr4a 2236 . . . . . 6 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) = (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)))
9998oveq2d 5885 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
10010zcnd 9365 . . . . . 6 (𝜑 → (𝐴↑(ϕ‘𝑁)) ∈ ℂ)
101 ax-1cn 7895 . . . . . . 7 1 ∈ ℂ
102 subdir 8333 . . . . . . 7 (((𝐴↑(ϕ‘𝑁)) ∈ ℂ ∧ 1 ∈ ℂ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℂ) → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
103101, 102mp3an2 1325 . . . . . 6 (((𝐴↑(ϕ‘𝑁)) ∈ ℂ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℂ) → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
104100, 96, 103syl2anc 411 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
10510, 11zsubcld 9369 . . . . . . 7 (𝜑 → ((𝐴↑(ϕ‘𝑁)) − 1) ∈ ℤ)
106105zcnd 9365 . . . . . 6 (𝜑 → ((𝐴↑(ϕ‘𝑁)) − 1) ∈ ℂ)
107106, 96mulcomd 7969 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)))
10899, 104, 1073eqtr2d 2216 . . . 4 (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁)) = (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)))
10995, 108breqtrd 4026 . . 3 (𝜑𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)))
1101, 2, 3eulerthlemrprm 12212 . . 3 (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1)
111 coprmdvds 12075 . . . 4 ((𝑁 ∈ ℤ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℤ ∧ ((𝐴↑(ϕ‘𝑁)) − 1) ∈ ℤ) → ((𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)) ∧ (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
11265, 24, 105, 111syl3anc 1238 . . 3 (𝜑 → ((𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)) ∧ (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
113109, 110, 112mp2and 433 . 2 (𝜑𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))
114 1z 9268 . . . 4 1 ∈ ℤ
115 moddvds 11790 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
116114, 115mp3an3 1326 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
1175, 10, 116syl2anc 411 . 2 (𝜑 → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
118113, 117mpbird 167 1 (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  {crab 2459   class class class wbr 4000  cmpt 4061  ccnv 4622  ccom 4627  wf 5208  1-1-ontowf1o 5211  cfv 5212  (class class class)co 5869  cc 7800  0cc0 7802  1c1 7803   · cmul 7807  cmin 8118  cn 8908  0cn0 9165  cz 9242  ...cfz 9995  ..^cfzo 10128   mod cmo 10308  cexp 10505  cprod 11542  cdvds 11778   gcd cgcd 11926  ϕcphi 12192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543  df-dvds 11779  df-gcd 11927  df-phi 12194
This theorem is referenced by:  eulerth  12216
  Copyright terms: Public domain W3C validator