ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlemth GIF version

Theorem eulerthlemth 12598
Description: Lemma for eulerth 12599. The result. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
Hypotheses
Ref Expression
eulerth.1 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
eulerth.2 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
eulerth.4 (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
Assertion
Ref Expression
eulerthlemth (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑁   𝜑,𝑦
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem eulerthlemth
Dummy variables 𝑢 𝑣 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerth.1 . . . . . 6 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
2 eulerth.2 . . . . . 6 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
3 eulerth.4 . . . . . 6 (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
41, 2, 3eulerthlema 12596 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) mod 𝑁))
51simp1d 1012 . . . . . 6 (𝜑𝑁 ∈ ℕ)
61simp2d 1013 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
75phicld 12584 . . . . . . . . 9 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
87nnnn0d 9355 . . . . . . . 8 (𝜑 → (ϕ‘𝑁) ∈ ℕ0)
9 zexpcl 10706 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑁) ∈ ℕ0) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ)
106, 8, 9syl2anc 411 . . . . . . 7 (𝜑 → (𝐴↑(ϕ‘𝑁)) ∈ ℤ)
11 1zzd 9406 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
127nnzd 9501 . . . . . . . . 9 (𝜑 → (ϕ‘𝑁) ∈ ℤ)
1311, 12fzfigd 10583 . . . . . . . 8 (𝜑 → (1...(ϕ‘𝑁)) ∈ Fin)
14 ssrab2 3279 . . . . . . . . . . 11 {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁)
152, 14eqsstri 3226 . . . . . . . . . 10 𝑆 ⊆ (0..^𝑁)
16 fzo0ssnn0 10351 . . . . . . . . . . 11 (0..^𝑁) ⊆ ℕ0
17 nn0ssz 9397 . . . . . . . . . . 11 0 ⊆ ℤ
1816, 17sstri 3203 . . . . . . . . . 10 (0..^𝑁) ⊆ ℤ
1915, 18sstri 3203 . . . . . . . . 9 𝑆 ⊆ ℤ
20 f1of 5529 . . . . . . . . . . 11 (𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆𝐹:(1...(ϕ‘𝑁))⟶𝑆)
213, 20syl 14 . . . . . . . . . 10 (𝜑𝐹:(1...(ϕ‘𝑁))⟶𝑆)
2221ffvelcdmda 5722 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑥) ∈ 𝑆)
2319, 22sselid 3192 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑥) ∈ ℤ)
2413, 23fprodzcl 11964 . . . . . . 7 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℤ)
2510, 24zmulcld 9508 . . . . . 6 (𝜑 → ((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) ∈ ℤ)
26 fveq2 5583 . . . . . . . . 9 (𝑧 = (𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁)) → (𝐹𝑧) = (𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))))
27 eqid 2206 . . . . . . . . . 10 (𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))) = (𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))
281, 2, 3, 27eulerthlemh 12597 . . . . . . . . 9 (𝜑 → (𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))):(1...(ϕ‘𝑁))–1-1-onto→(1...(ϕ‘𝑁)))
29 eqid 2206 . . . . . . . . . . . . 13 (1...(ϕ‘𝑁)) = (1...(ϕ‘𝑁))
30 fveq2 5583 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
3130oveq2d 5967 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (𝐴 · (𝐹𝑣)) = (𝐴 · (𝐹𝑢)))
3231oveq1d 5966 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → ((𝐴 · (𝐹𝑣)) mod 𝑁) = ((𝐴 · (𝐹𝑢)) mod 𝑁))
3332cbvmptv 4144 . . . . . . . . . . . . 13 (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)) = (𝑢 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑢)) mod 𝑁))
341, 2, 29, 3, 33eulerthlem1 12593 . . . . . . . . . . . 12 (𝜑 → (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆)
35 fveq2 5583 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
3635oveq2d 5967 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → (𝐴 · (𝐹𝑣)) = (𝐴 · (𝐹𝑦)))
3736oveq1d 5966 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → ((𝐴 · (𝐹𝑣)) mod 𝑁) = ((𝐴 · (𝐹𝑦)) mod 𝑁))
3837cbvmptv 4144 . . . . . . . . . . . . 13 (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)) = (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))
3938feq1i 5424 . . . . . . . . . . . 12 ((𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆 ↔ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆)
4034, 39sylib 122 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆)
41 fvco3 5657 . . . . . . . . . . 11 (((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))‘𝑥) = (𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥)))
4240, 41sylan 283 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))‘𝑥) = (𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥)))
43 eqid 2206 . . . . . . . . . . . 12 (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)) = (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))
44 fveq2 5583 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
4544oveq2d 5967 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝐴 · (𝐹𝑦)) = (𝐴 · (𝐹𝑥)))
4645oveq1d 5966 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝐴 · (𝐹𝑦)) mod 𝑁) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
47 simpr 110 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑥 ∈ (1...(ϕ‘𝑁)))
486adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝐴 ∈ ℤ)
4948, 23zmulcld 9508 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐴 · (𝐹𝑥)) ∈ ℤ)
505adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑁 ∈ ℕ)
51 zmodfzo 10499 . . . . . . . . . . . . 13 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
5249, 50, 51syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
5343, 46, 47, 52fvmptd3 5680 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
5453fveq2d 5587 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥)) = (𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁)))
5542, 54eqtrd 2239 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))‘𝑥) = (𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁)))
5621ffvelcdmda 5722 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑧) ∈ 𝑆)
5719, 56sselid 3192 . . . . . . . . . 10 ((𝜑𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑧) ∈ ℤ)
5857zcnd 9503 . . . . . . . . 9 ((𝜑𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑧) ∈ ℂ)
5926, 13, 28, 55, 58fprodf1o 11943 . . . . . . . 8 (𝜑 → ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))))
603adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
61 modgcd 12356 . . . . . . . . . . . . 13 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
6249, 50, 61syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
6350nnzd 9501 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑁 ∈ ℤ)
6463, 49gcdcomd 12339 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
655nnzd 9501 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
666, 65gcdcomd 12339 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 gcd 𝑁) = (𝑁 gcd 𝐴))
671simp3d 1014 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 gcd 𝑁) = 1)
6866, 67eqtr3d 2241 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 gcd 𝐴) = 1)
6968adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd 𝐴) = 1)
7023, 63gcdcomd 12339 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹𝑥) gcd 𝑁) = (𝑁 gcd (𝐹𝑥)))
71 oveq1 5958 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐹𝑥) → (𝑦 gcd 𝑁) = ((𝐹𝑥) gcd 𝑁))
7271eqeq1d 2215 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐹𝑥) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹𝑥) gcd 𝑁) = 1))
7372, 2elrab2 2933 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ 𝑆 ↔ ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
7422, 73sylib 122 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
7574simprd 114 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹𝑥) gcd 𝑁) = 1)
7670, 75eqtr3d 2241 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐹𝑥)) = 1)
77 rpmul 12464 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
7863, 48, 23, 77syl3anc 1250 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
7969, 76, 78mp2and 433 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1)
8062, 64, 793eqtr2d 2245 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1)
81 oveq1 5958 . . . . . . . . . . . . 13 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → (𝑦 gcd 𝑁) = (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁))
8281eqeq1d 2215 . . . . . . . . . . . 12 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
8382, 2elrab2 2933 . . . . . . . . . . 11 (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
8452, 80, 83sylanbrc 417 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆)
85 f1ocnvfv2 5854 . . . . . . . . . 10 ((𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆 ∧ ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆) → (𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
8660, 84, 85syl2anc 411 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
8786prodeq2dv 11921 . . . . . . . 8 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))) = ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁))
8859, 87eqtr2d 2240 . . . . . . 7 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) = ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧))
89 fveq2 5583 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
9089cbvprodv 11914 . . . . . . . 8 𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)
9190, 24eqeltrid 2293 . . . . . . 7 (𝜑 → ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧) ∈ ℤ)
9288, 91eqeltrd 2283 . . . . . 6 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ ℤ)
93 moddvds 12154 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) ∈ ℤ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ ℤ) → ((((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) mod 𝑁) ↔ 𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁))))
945, 25, 92, 93syl3anc 1250 . . . . 5 (𝜑 → ((((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) mod 𝑁) ↔ 𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁))))
954, 94mpbid 147 . . . 4 (𝜑𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁)))
9624zcnd 9503 . . . . . . . 8 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℂ)
9796mulid2d 8098 . . . . . . 7 (𝜑 → (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))
9890, 88, 973eqtr4a 2265 . . . . . 6 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) = (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)))
9998oveq2d 5967 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
10010zcnd 9503 . . . . . 6 (𝜑 → (𝐴↑(ϕ‘𝑁)) ∈ ℂ)
101 ax-1cn 8025 . . . . . . 7 1 ∈ ℂ
102 subdir 8465 . . . . . . 7 (((𝐴↑(ϕ‘𝑁)) ∈ ℂ ∧ 1 ∈ ℂ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℂ) → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
103101, 102mp3an2 1338 . . . . . 6 (((𝐴↑(ϕ‘𝑁)) ∈ ℂ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℂ) → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
104100, 96, 103syl2anc 411 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
10510, 11zsubcld 9507 . . . . . . 7 (𝜑 → ((𝐴↑(ϕ‘𝑁)) − 1) ∈ ℤ)
106105zcnd 9503 . . . . . 6 (𝜑 → ((𝐴↑(ϕ‘𝑁)) − 1) ∈ ℂ)
107106, 96mulcomd 8101 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)))
10899, 104, 1073eqtr2d 2245 . . . 4 (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁)) = (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)))
10995, 108breqtrd 4073 . . 3 (𝜑𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)))
1101, 2, 3eulerthlemrprm 12595 . . 3 (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1)
111 coprmdvds 12458 . . . 4 ((𝑁 ∈ ℤ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℤ ∧ ((𝐴↑(ϕ‘𝑁)) − 1) ∈ ℤ) → ((𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)) ∧ (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
11265, 24, 105, 111syl3anc 1250 . . 3 (𝜑 → ((𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)) ∧ (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
113109, 110, 112mp2and 433 . 2 (𝜑𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))
114 1z 9405 . . . 4 1 ∈ ℤ
115 moddvds 12154 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
116114, 115mp3an3 1339 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
1175, 10, 116syl2anc 411 . 2 (𝜑 → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
118113, 117mpbird 167 1 (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  {crab 2489   class class class wbr 4047  cmpt 4109  ccnv 4678  ccom 4683  wf 5272  1-1-ontowf1o 5275  cfv 5276  (class class class)co 5951  cc 7930  0cc0 7932  1c1 7933   · cmul 7937  cmin 8250  cn 9043  0cn0 9302  cz 9379  ...cfz 10137  ..^cfzo 10271   mod cmo 10474  cexp 10690  cprod 11905  cdvds 12142   gcd cgcd 12318  ϕcphi 12575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-proddc 11906  df-dvds 12143  df-gcd 12319  df-phi 12577
This theorem is referenced by:  eulerth  12599
  Copyright terms: Public domain W3C validator