ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlemth GIF version

Theorem eulerthlemth 12400
Description: Lemma for eulerth 12401. The result. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
Hypotheses
Ref Expression
eulerth.1 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
eulerth.2 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
eulerth.4 (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
Assertion
Ref Expression
eulerthlemth (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑁   𝜑,𝑦
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem eulerthlemth
Dummy variables 𝑢 𝑣 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerth.1 . . . . . 6 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
2 eulerth.2 . . . . . 6 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
3 eulerth.4 . . . . . 6 (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
41, 2, 3eulerthlema 12398 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) mod 𝑁))
51simp1d 1011 . . . . . 6 (𝜑𝑁 ∈ ℕ)
61simp2d 1012 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
75phicld 12386 . . . . . . . . 9 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
87nnnn0d 9302 . . . . . . . 8 (𝜑 → (ϕ‘𝑁) ∈ ℕ0)
9 zexpcl 10646 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑁) ∈ ℕ0) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ)
106, 8, 9syl2anc 411 . . . . . . 7 (𝜑 → (𝐴↑(ϕ‘𝑁)) ∈ ℤ)
11 1zzd 9353 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
127nnzd 9447 . . . . . . . . 9 (𝜑 → (ϕ‘𝑁) ∈ ℤ)
1311, 12fzfigd 10523 . . . . . . . 8 (𝜑 → (1...(ϕ‘𝑁)) ∈ Fin)
14 ssrab2 3268 . . . . . . . . . . 11 {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁)
152, 14eqsstri 3215 . . . . . . . . . 10 𝑆 ⊆ (0..^𝑁)
16 fzo0ssnn0 10291 . . . . . . . . . . 11 (0..^𝑁) ⊆ ℕ0
17 nn0ssz 9344 . . . . . . . . . . 11 0 ⊆ ℤ
1816, 17sstri 3192 . . . . . . . . . 10 (0..^𝑁) ⊆ ℤ
1915, 18sstri 3192 . . . . . . . . 9 𝑆 ⊆ ℤ
20 f1of 5504 . . . . . . . . . . 11 (𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆𝐹:(1...(ϕ‘𝑁))⟶𝑆)
213, 20syl 14 . . . . . . . . . 10 (𝜑𝐹:(1...(ϕ‘𝑁))⟶𝑆)
2221ffvelcdmda 5697 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑥) ∈ 𝑆)
2319, 22sselid 3181 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑥) ∈ ℤ)
2413, 23fprodzcl 11774 . . . . . . 7 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℤ)
2510, 24zmulcld 9454 . . . . . 6 (𝜑 → ((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) ∈ ℤ)
26 fveq2 5558 . . . . . . . . 9 (𝑧 = (𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁)) → (𝐹𝑧) = (𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))))
27 eqid 2196 . . . . . . . . . 10 (𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))) = (𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))
281, 2, 3, 27eulerthlemh 12399 . . . . . . . . 9 (𝜑 → (𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))):(1...(ϕ‘𝑁))–1-1-onto→(1...(ϕ‘𝑁)))
29 eqid 2196 . . . . . . . . . . . . 13 (1...(ϕ‘𝑁)) = (1...(ϕ‘𝑁))
30 fveq2 5558 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
3130oveq2d 5938 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (𝐴 · (𝐹𝑣)) = (𝐴 · (𝐹𝑢)))
3231oveq1d 5937 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → ((𝐴 · (𝐹𝑣)) mod 𝑁) = ((𝐴 · (𝐹𝑢)) mod 𝑁))
3332cbvmptv 4129 . . . . . . . . . . . . 13 (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)) = (𝑢 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑢)) mod 𝑁))
341, 2, 29, 3, 33eulerthlem1 12395 . . . . . . . . . . . 12 (𝜑 → (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆)
35 fveq2 5558 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
3635oveq2d 5938 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → (𝐴 · (𝐹𝑣)) = (𝐴 · (𝐹𝑦)))
3736oveq1d 5937 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → ((𝐴 · (𝐹𝑣)) mod 𝑁) = ((𝐴 · (𝐹𝑦)) mod 𝑁))
3837cbvmptv 4129 . . . . . . . . . . . . 13 (𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)) = (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))
3938feq1i 5400 . . . . . . . . . . . 12 ((𝑣 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑣)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆 ↔ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆)
4034, 39sylib 122 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆)
41 fvco3 5632 . . . . . . . . . . 11 (((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)):(1...(ϕ‘𝑁))⟶𝑆𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))‘𝑥) = (𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥)))
4240, 41sylan 283 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))‘𝑥) = (𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥)))
43 eqid 2196 . . . . . . . . . . . 12 (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)) = (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))
44 fveq2 5558 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
4544oveq2d 5938 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝐴 · (𝐹𝑦)) = (𝐴 · (𝐹𝑥)))
4645oveq1d 5937 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝐴 · (𝐹𝑦)) mod 𝑁) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
47 simpr 110 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑥 ∈ (1...(ϕ‘𝑁)))
486adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝐴 ∈ ℤ)
4948, 23zmulcld 9454 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐴 · (𝐹𝑥)) ∈ ℤ)
505adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑁 ∈ ℕ)
51 zmodfzo 10439 . . . . . . . . . . . . 13 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
5249, 50, 51syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
5343, 46, 47, 52fvmptd3 5655 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
5453fveq2d 5562 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹‘((𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁))‘𝑥)) = (𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁)))
5542, 54eqtrd 2229 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))‘𝑥) = (𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁)))
5621ffvelcdmda 5697 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑧) ∈ 𝑆)
5719, 56sselid 3181 . . . . . . . . . 10 ((𝜑𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑧) ∈ ℤ)
5857zcnd 9449 . . . . . . . . 9 ((𝜑𝑧 ∈ (1...(ϕ‘𝑁))) → (𝐹𝑧) ∈ ℂ)
5926, 13, 28, 55, 58fprodf1o 11753 . . . . . . . 8 (𝜑 → ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))))
603adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)
61 modgcd 12158 . . . . . . . . . . . . 13 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
6249, 50, 61syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
6350nnzd 9447 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → 𝑁 ∈ ℤ)
6463, 49gcdcomd 12141 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
655nnzd 9447 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
666, 65gcdcomd 12141 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 gcd 𝑁) = (𝑁 gcd 𝐴))
671simp3d 1013 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 gcd 𝑁) = 1)
6866, 67eqtr3d 2231 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 gcd 𝐴) = 1)
6968adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd 𝐴) = 1)
7023, 63gcdcomd 12141 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹𝑥) gcd 𝑁) = (𝑁 gcd (𝐹𝑥)))
71 oveq1 5929 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐹𝑥) → (𝑦 gcd 𝑁) = ((𝐹𝑥) gcd 𝑁))
7271eqeq1d 2205 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐹𝑥) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹𝑥) gcd 𝑁) = 1))
7372, 2elrab2 2923 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ 𝑆 ↔ ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
7422, 73sylib 122 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
7574simprd 114 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐹𝑥) gcd 𝑁) = 1)
7670, 75eqtr3d 2231 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐹𝑥)) = 1)
77 rpmul 12266 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
7863, 48, 23, 77syl3anc 1249 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
7969, 76, 78mp2and 433 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1)
8062, 64, 793eqtr2d 2235 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1)
81 oveq1 5929 . . . . . . . . . . . . 13 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → (𝑦 gcd 𝑁) = (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁))
8281eqeq1d 2205 . . . . . . . . . . . 12 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
8382, 2elrab2 2923 . . . . . . . . . . 11 (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
8452, 80, 83sylanbrc 417 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆)
85 f1ocnvfv2 5825 . . . . . . . . . 10 ((𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆 ∧ ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆) → (𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
8660, 84, 85syl2anc 411 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(ϕ‘𝑁))) → (𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))) = ((𝐴 · (𝐹𝑥)) mod 𝑁))
8786prodeq2dv 11731 . . . . . . . 8 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘(𝐹‘((𝐴 · (𝐹𝑥)) mod 𝑁))) = ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁))
8859, 87eqtr2d 2230 . . . . . . 7 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) = ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧))
89 fveq2 5558 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
9089cbvprodv 11724 . . . . . . . 8 𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)
9190, 24eqeltrid 2283 . . . . . . 7 (𝜑 → ∏𝑧 ∈ (1...(ϕ‘𝑁))(𝐹𝑧) ∈ ℤ)
9288, 91eqeltrd 2273 . . . . . 6 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ ℤ)
93 moddvds 11964 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) ∈ ℤ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ ℤ) → ((((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) mod 𝑁) ↔ 𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁))))
945, 25, 92, 93syl3anc 1249 . . . . 5 (𝜑 → ((((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) mod 𝑁) ↔ 𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁))))
954, 94mpbid 147 . . . 4 (𝜑𝑁 ∥ (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁)))
9624zcnd 9449 . . . . . . . 8 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℂ)
9796mulid2d 8045 . . . . . . 7 (𝜑 → (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))
9890, 88, 973eqtr4a 2255 . . . . . 6 (𝜑 → ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) = (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)))
9998oveq2d 5938 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
10010zcnd 9449 . . . . . 6 (𝜑 → (𝐴↑(ϕ‘𝑁)) ∈ ℂ)
101 ax-1cn 7972 . . . . . . 7 1 ∈ ℂ
102 subdir 8412 . . . . . . 7 (((𝐴↑(ϕ‘𝑁)) ∈ ℂ ∧ 1 ∈ ℂ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℂ) → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
103101, 102mp3an2 1336 . . . . . 6 (((𝐴↑(ϕ‘𝑁)) ∈ ℂ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℂ) → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
104100, 96, 103syl2anc 411 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − (1 · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥))))
10510, 11zsubcld 9453 . . . . . . 7 (𝜑 → ((𝐴↑(ϕ‘𝑁)) − 1) ∈ ℤ)
106105zcnd 9449 . . . . . 6 (𝜑 → ((𝐴↑(ϕ‘𝑁)) − 1) ∈ ℂ)
107106, 96mulcomd 8048 . . . . 5 (𝜑 → (((𝐴↑(ϕ‘𝑁)) − 1) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)))
10899, 104, 1073eqtr2d 2235 . . . 4 (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) − ∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁)) = (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)))
10995, 108breqtrd 4059 . . 3 (𝜑𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)))
1101, 2, 3eulerthlemrprm 12397 . . 3 (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1)
111 coprmdvds 12260 . . . 4 ((𝑁 ∈ ℤ ∧ ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) ∈ ℤ ∧ ((𝐴↑(ϕ‘𝑁)) − 1) ∈ ℤ) → ((𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)) ∧ (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
11265, 24, 105, 111syl3anc 1249 . . 3 (𝜑 → ((𝑁 ∥ (∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) · ((𝐴↑(ϕ‘𝑁)) − 1)) ∧ (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
113109, 110, 112mp2and 433 . 2 (𝜑𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))
114 1z 9352 . . . 4 1 ∈ ℤ
115 moddvds 11964 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
116114, 115mp3an3 1337 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
1175, 10, 116syl2anc 411 . 2 (𝜑 → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
118113, 117mpbird 167 1 (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  {crab 2479   class class class wbr 4033  cmpt 4094  ccnv 4662  ccom 4667  wf 5254  1-1-ontowf1o 5257  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880   · cmul 7884  cmin 8197  cn 8990  0cn0 9249  cz 9326  ...cfz 10083  ..^cfzo 10217   mod cmo 10414  cexp 10630  cprod 11715  cdvds 11952   gcd cgcd 12120  ϕcphi 12377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716  df-dvds 11953  df-gcd 12121  df-phi 12379
This theorem is referenced by:  eulerth  12401
  Copyright terms: Public domain W3C validator