Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > gtso | GIF version |
Description: 'Greater than' is a strict ordering. (Contributed by JJ, 11-Oct-2018.) |
Ref | Expression |
---|---|
gtso | ⊢ ◡ < Or ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 7976 | . 2 ⊢ < Or ℝ | |
2 | 0re 7899 | . . 3 ⊢ 0 ∈ ℝ | |
3 | elex2 2742 | . . 3 ⊢ (0 ∈ ℝ → ∃𝑥 𝑥 ∈ ℝ) | |
4 | cnvsom 5147 | . . 3 ⊢ (∃𝑥 𝑥 ∈ ℝ → ( < Or ℝ ↔ ◡ < Or ℝ)) | |
5 | 2, 3, 4 | mp2b 8 | . 2 ⊢ ( < Or ℝ ↔ ◡ < Or ℝ) |
6 | 1, 5 | mpbi 144 | 1 ⊢ ◡ < Or ℝ |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃wex 1480 ∈ wcel 2136 Or wor 4273 ◡ccnv 4603 ℝcr 7752 0cc0 7753 < clt 7933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-po 4274 df-iso 4275 df-xp 4610 df-cnv 4612 df-pnf 7935 df-mnf 7936 df-ltxr 7938 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |