| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gtso | GIF version | ||
| Description: 'Greater than' is a strict ordering. (Contributed by JJ, 11-Oct-2018.) |
| Ref | Expression |
|---|---|
| gtso | ⊢ ◡ < Or ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso 8132 | . 2 ⊢ < Or ℝ | |
| 2 | 0re 8054 | . . 3 ⊢ 0 ∈ ℝ | |
| 3 | elex2 2787 | . . 3 ⊢ (0 ∈ ℝ → ∃𝑥 𝑥 ∈ ℝ) | |
| 4 | cnvsom 5223 | . . 3 ⊢ (∃𝑥 𝑥 ∈ ℝ → ( < Or ℝ ↔ ◡ < Or ℝ)) | |
| 5 | 2, 3, 4 | mp2b 8 | . 2 ⊢ ( < Or ℝ ↔ ◡ < Or ℝ) |
| 6 | 1, 5 | mpbi 145 | 1 ⊢ ◡ < Or ℝ |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1514 ∈ wcel 2175 Or wor 4340 ◡ccnv 4672 ℝcr 7906 0cc0 7907 < clt 8089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-po 4341 df-iso 4342 df-xp 4679 df-cnv 4681 df-pnf 8091 df-mnf 8092 df-ltxr 8094 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |