![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gtso | GIF version |
Description: 'Greater than' is a strict ordering. (Contributed by JJ, 11-Oct-2018.) |
Ref | Expression |
---|---|
gtso | ⊢ ◡ < Or ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 7561 | . 2 ⊢ < Or ℝ | |
2 | 0re 7486 | . . 3 ⊢ 0 ∈ ℝ | |
3 | elex2 2635 | . . 3 ⊢ (0 ∈ ℝ → ∃𝑥 𝑥 ∈ ℝ) | |
4 | cnvsom 4974 | . . 3 ⊢ (∃𝑥 𝑥 ∈ ℝ → ( < Or ℝ ↔ ◡ < Or ℝ)) | |
5 | 2, 3, 4 | mp2b 8 | . 2 ⊢ ( < Or ℝ ↔ ◡ < Or ℝ) |
6 | 1, 5 | mpbi 143 | 1 ⊢ ◡ < Or ℝ |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∃wex 1426 ∈ wcel 1438 Or wor 4122 ◡ccnv 4437 ℝcr 7347 0cc0 7348 < clt 7520 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7434 ax-resscn 7435 ax-1re 7437 ax-addrcl 7440 ax-rnegex 7452 ax-pre-ltirr 7455 ax-pre-ltwlin 7456 ax-pre-lttrn 7457 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-rab 2368 df-v 2621 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-po 4123 df-iso 4124 df-xp 4444 df-cnv 4446 df-pnf 7522 df-mnf 7523 df-ltxr 7525 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |