ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gtso GIF version

Theorem gtso 8171
Description: 'Greater than' is a strict ordering. (Contributed by JJ, 11-Oct-2018.)
Assertion
Ref Expression
gtso < Or ℝ

Proof of Theorem gtso
StepHypRef Expression
1 ltso 8170 . 2 < Or ℝ
2 0re 8092 . . 3 0 ∈ ℝ
3 elex2 2790 . . 3 (0 ∈ ℝ → ∃𝑥 𝑥 ∈ ℝ)
4 cnvsom 5235 . . 3 (∃𝑥 𝑥 ∈ ℝ → ( < Or ℝ ↔ < Or ℝ))
52, 3, 4mp2b 8 . 2 ( < Or ℝ ↔ < Or ℝ)
61, 5mpbi 145 1 < Or ℝ
Colors of variables: wff set class
Syntax hints:  wb 105  wex 1516  wcel 2177   Or wor 4350  ccnv 4682  cr 7944  0cc0 7945   < clt 8127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-po 4351  df-iso 4352  df-xp 4689  df-cnv 4691  df-pnf 8129  df-mnf 8130  df-ltxr 8132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator