ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcncf GIF version

Theorem climcncf 13211
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
climcncf.1 𝑍 = (ℤ𝑀)
climcncf.2 (𝜑𝑀 ∈ ℤ)
climcncf.4 (𝜑𝐹 ∈ (𝐴cn𝐵))
climcncf.5 (𝜑𝐺:𝑍𝐴)
climcncf.6 (𝜑𝐺𝐷)
climcncf.7 (𝜑𝐷𝐴)
Assertion
Ref Expression
climcncf (𝜑 → (𝐹𝐺) ⇝ (𝐹𝐷))

Proof of Theorem climcncf
Dummy variables 𝑦 𝑧 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climcncf.1 . 2 𝑍 = (ℤ𝑀)
2 climcncf.2 . 2 (𝜑𝑀 ∈ ℤ)
3 climcncf.7 . 2 (𝜑𝐷𝐴)
4 climcncf.4 . . . . 5 (𝜑𝐹 ∈ (𝐴cn𝐵))
5 cncff 13204 . . . . 5 (𝐹 ∈ (𝐴cn𝐵) → 𝐹:𝐴𝐵)
64, 5syl 14 . . . 4 (𝜑𝐹:𝐴𝐵)
76ffvelrnda 5620 . . 3 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ 𝐵)
8 cncfrss2 13203 . . . . 5 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
94, 8syl 14 . . . 4 (𝜑𝐵 ⊆ ℂ)
109sselda 3142 . . 3 ((𝜑 ∧ (𝐹𝑧) ∈ 𝐵) → (𝐹𝑧) ∈ ℂ)
117, 10syldan 280 . 2 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
12 climcncf.6 . 2 (𝜑𝐺𝐷)
13 climcncf.5 . . . 4 (𝜑𝐺:𝑍𝐴)
14 zex 9200 . . . . . 6 ℤ ∈ V
15 uzssz 9485 . . . . . 6 (ℤ𝑀) ⊆ ℤ
1614, 15ssexi 4120 . . . . 5 (ℤ𝑀) ∈ V
171, 16eqeltri 2239 . . . 4 𝑍 ∈ V
18 fex 5714 . . . 4 ((𝐺:𝑍𝐴𝑍 ∈ V) → 𝐺 ∈ V)
1913, 17, 18sylancl 410 . . 3 (𝜑𝐺 ∈ V)
20 coexg 5148 . . 3 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝐺 ∈ V) → (𝐹𝐺) ∈ V)
214, 19, 20syl2anc 409 . 2 (𝜑 → (𝐹𝐺) ∈ V)
22 cncfi 13205 . . . . 5 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝐷𝐴𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((abs‘(𝑧𝐷)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐷))) < 𝑥))
23223expia 1195 . . . 4 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝐷𝐴) → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+𝑧𝐴 ((abs‘(𝑧𝐷)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐷))) < 𝑥)))
244, 3, 23syl2anc 409 . . 3 (𝜑 → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+𝑧𝐴 ((abs‘(𝑧𝐷)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐷))) < 𝑥)))
2524imp 123 . 2 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((abs‘(𝑧𝐷)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐷))) < 𝑥))
2613ffvelrnda 5620 . 2 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐴)
27 fvco3 5557 . . 3 ((𝐺:𝑍𝐴𝑘𝑍) → ((𝐹𝐺)‘𝑘) = (𝐹‘(𝐺𝑘)))
2813, 27sylan 281 . 2 ((𝜑𝑘𝑍) → ((𝐹𝐺)‘𝑘) = (𝐹‘(𝐺𝑘)))
291, 2, 3, 11, 12, 21, 25, 26, 28climcn1 11249 1 (𝜑 → (𝐹𝐺) ⇝ (𝐹𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  wral 2444  wrex 2445  Vcvv 2726  wss 3116   class class class wbr 3982  ccom 4608  wf 5184  cfv 5188  (class class class)co 5842  cc 7751   < clt 7933  cmin 8069  cz 9191  cuz 9466  +crp 9589  abscabs 10939  cli 11219  cnccncf 13197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-cncf 13198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator