| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climcncf | GIF version | ||
| Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| Ref | Expression |
|---|---|
| climcncf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climcncf.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climcncf.4 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) |
| climcncf.5 | ⊢ (𝜑 → 𝐺:𝑍⟶𝐴) |
| climcncf.6 | ⊢ (𝜑 → 𝐺 ⇝ 𝐷) |
| climcncf.7 | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| climcncf | ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝ (𝐹‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcncf.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climcncf.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climcncf.7 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
| 4 | climcncf.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) | |
| 5 | cncff 15245 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) | |
| 6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 7 | 6 | ffvelcdmda 5769 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
| 8 | cncfrss2 15244 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
| 9 | 4, 8 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℂ) |
| 10 | 9 | sselda 3224 | . . 3 ⊢ ((𝜑 ∧ (𝐹‘𝑧) ∈ 𝐵) → (𝐹‘𝑧) ∈ ℂ) |
| 11 | 7, 10 | syldan 282 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ ℂ) |
| 12 | climcncf.6 | . 2 ⊢ (𝜑 → 𝐺 ⇝ 𝐷) | |
| 13 | climcncf.5 | . . . 4 ⊢ (𝜑 → 𝐺:𝑍⟶𝐴) | |
| 14 | zex 9451 | . . . . . 6 ⊢ ℤ ∈ V | |
| 15 | uzssz 9738 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 16 | 14, 15 | ssexi 4221 | . . . . 5 ⊢ (ℤ≥‘𝑀) ∈ V |
| 17 | 1, 16 | eqeltri 2302 | . . . 4 ⊢ 𝑍 ∈ V |
| 18 | fex 5867 | . . . 4 ⊢ ((𝐺:𝑍⟶𝐴 ∧ 𝑍 ∈ V) → 𝐺 ∈ V) | |
| 19 | 13, 17, 18 | sylancl 413 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
| 20 | coexg 5272 | . . 3 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐺 ∈ V) → (𝐹 ∘ 𝐺) ∈ V) | |
| 21 | 4, 19, 20 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ V) |
| 22 | cncfi 15246 | . . . . 5 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐷 ∈ 𝐴 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥)) | |
| 23 | 22 | 3expia 1229 | . . . 4 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥))) |
| 24 | 4, 3, 23 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥))) |
| 25 | 24 | imp 124 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥)) |
| 26 | 13 | ffvelcdmda 5769 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝐴) |
| 27 | fvco3 5704 | . . 3 ⊢ ((𝐺:𝑍⟶𝐴 ∧ 𝑘 ∈ 𝑍) → ((𝐹 ∘ 𝐺)‘𝑘) = (𝐹‘(𝐺‘𝑘))) | |
| 28 | 13, 27 | sylan 283 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹 ∘ 𝐺)‘𝑘) = (𝐹‘(𝐺‘𝑘))) |
| 29 | 1, 2, 3, 11, 12, 21, 25, 26, 28 | climcn1 11814 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝ (𝐹‘𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 Vcvv 2799 ⊆ wss 3197 class class class wbr 4082 ∘ ccom 4722 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 ℂcc 7993 < clt 8177 − cmin 8313 ℤcz 9442 ℤ≥cuz 9718 ℝ+crp 9845 abscabs 11503 ⇝ cli 11784 –cn→ccncf 15238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-map 6795 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-n0 9366 df-z 9443 df-uz 9719 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-cncf 15239 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |