| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climcncf | GIF version | ||
| Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| Ref | Expression |
|---|---|
| climcncf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climcncf.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climcncf.4 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) |
| climcncf.5 | ⊢ (𝜑 → 𝐺:𝑍⟶𝐴) |
| climcncf.6 | ⊢ (𝜑 → 𝐺 ⇝ 𝐷) |
| climcncf.7 | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| climcncf | ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝ (𝐹‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcncf.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climcncf.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climcncf.7 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
| 4 | climcncf.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) | |
| 5 | cncff 14897 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) | |
| 6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 7 | 6 | ffvelcdmda 5700 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
| 8 | cncfrss2 14896 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
| 9 | 4, 8 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℂ) |
| 10 | 9 | sselda 3184 | . . 3 ⊢ ((𝜑 ∧ (𝐹‘𝑧) ∈ 𝐵) → (𝐹‘𝑧) ∈ ℂ) |
| 11 | 7, 10 | syldan 282 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ ℂ) |
| 12 | climcncf.6 | . 2 ⊢ (𝜑 → 𝐺 ⇝ 𝐷) | |
| 13 | climcncf.5 | . . . 4 ⊢ (𝜑 → 𝐺:𝑍⟶𝐴) | |
| 14 | zex 9352 | . . . . . 6 ⊢ ℤ ∈ V | |
| 15 | uzssz 9638 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 16 | 14, 15 | ssexi 4172 | . . . . 5 ⊢ (ℤ≥‘𝑀) ∈ V |
| 17 | 1, 16 | eqeltri 2269 | . . . 4 ⊢ 𝑍 ∈ V |
| 18 | fex 5794 | . . . 4 ⊢ ((𝐺:𝑍⟶𝐴 ∧ 𝑍 ∈ V) → 𝐺 ∈ V) | |
| 19 | 13, 17, 18 | sylancl 413 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
| 20 | coexg 5215 | . . 3 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐺 ∈ V) → (𝐹 ∘ 𝐺) ∈ V) | |
| 21 | 4, 19, 20 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ V) |
| 22 | cncfi 14898 | . . . . 5 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐷 ∈ 𝐴 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥)) | |
| 23 | 22 | 3expia 1207 | . . . 4 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥))) |
| 24 | 4, 3, 23 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥))) |
| 25 | 24 | imp 124 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥)) |
| 26 | 13 | ffvelcdmda 5700 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝐴) |
| 27 | fvco3 5635 | . . 3 ⊢ ((𝐺:𝑍⟶𝐴 ∧ 𝑘 ∈ 𝑍) → ((𝐹 ∘ 𝐺)‘𝑘) = (𝐹‘(𝐺‘𝑘))) | |
| 28 | 13, 27 | sylan 283 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹 ∘ 𝐺)‘𝑘) = (𝐹‘(𝐺‘𝑘))) |
| 29 | 1, 2, 3, 11, 12, 21, 25, 26, 28 | climcn1 11490 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝ (𝐹‘𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 Vcvv 2763 ⊆ wss 3157 class class class wbr 4034 ∘ ccom 4668 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 ℂcc 7894 < clt 8078 − cmin 8214 ℤcz 9343 ℤ≥cuz 9618 ℝ+crp 9745 abscabs 11179 ⇝ cli 11460 –cn→ccncf 14890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-map 6718 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-n0 9267 df-z 9344 df-uz 9619 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-cncf 14891 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |