| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climcncf | GIF version | ||
| Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| Ref | Expression |
|---|---|
| climcncf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climcncf.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climcncf.4 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) |
| climcncf.5 | ⊢ (𝜑 → 𝐺:𝑍⟶𝐴) |
| climcncf.6 | ⊢ (𝜑 → 𝐺 ⇝ 𝐷) |
| climcncf.7 | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| climcncf | ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝ (𝐹‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcncf.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climcncf.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climcncf.7 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
| 4 | climcncf.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) | |
| 5 | cncff 14991 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) | |
| 6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 7 | 6 | ffvelcdmda 5714 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
| 8 | cncfrss2 14990 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
| 9 | 4, 8 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℂ) |
| 10 | 9 | sselda 3192 | . . 3 ⊢ ((𝜑 ∧ (𝐹‘𝑧) ∈ 𝐵) → (𝐹‘𝑧) ∈ ℂ) |
| 11 | 7, 10 | syldan 282 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ ℂ) |
| 12 | climcncf.6 | . 2 ⊢ (𝜑 → 𝐺 ⇝ 𝐷) | |
| 13 | climcncf.5 | . . . 4 ⊢ (𝜑 → 𝐺:𝑍⟶𝐴) | |
| 14 | zex 9380 | . . . . . 6 ⊢ ℤ ∈ V | |
| 15 | uzssz 9667 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 16 | 14, 15 | ssexi 4181 | . . . . 5 ⊢ (ℤ≥‘𝑀) ∈ V |
| 17 | 1, 16 | eqeltri 2277 | . . . 4 ⊢ 𝑍 ∈ V |
| 18 | fex 5812 | . . . 4 ⊢ ((𝐺:𝑍⟶𝐴 ∧ 𝑍 ∈ V) → 𝐺 ∈ V) | |
| 19 | 13, 17, 18 | sylancl 413 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
| 20 | coexg 5226 | . . 3 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐺 ∈ V) → (𝐹 ∘ 𝐺) ∈ V) | |
| 21 | 4, 19, 20 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ V) |
| 22 | cncfi 14992 | . . . . 5 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐷 ∈ 𝐴 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥)) | |
| 23 | 22 | 3expia 1207 | . . . 4 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥))) |
| 24 | 4, 3, 23 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥))) |
| 25 | 24 | imp 124 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥)) |
| 26 | 13 | ffvelcdmda 5714 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝐴) |
| 27 | fvco3 5649 | . . 3 ⊢ ((𝐺:𝑍⟶𝐴 ∧ 𝑘 ∈ 𝑍) → ((𝐹 ∘ 𝐺)‘𝑘) = (𝐹‘(𝐺‘𝑘))) | |
| 28 | 13, 27 | sylan 283 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹 ∘ 𝐺)‘𝑘) = (𝐹‘(𝐺‘𝑘))) |
| 29 | 1, 2, 3, 11, 12, 21, 25, 26, 28 | climcn1 11561 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝ (𝐹‘𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ∃wrex 2484 Vcvv 2771 ⊆ wss 3165 class class class wbr 4043 ∘ ccom 4678 ⟶wf 5266 ‘cfv 5270 (class class class)co 5943 ℂcc 7922 < clt 8106 − cmin 8242 ℤcz 9371 ℤ≥cuz 9647 ℝ+crp 9774 abscabs 11250 ⇝ cli 11531 –cn→ccncf 14984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-map 6736 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-n0 9295 df-z 9372 df-uz 9648 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-clim 11532 df-cncf 14985 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |