ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftval GIF version

Theorem shftval 11344
Description: Value of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 4-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵𝐴)))

Proof of Theorem shftval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . 5 𝐹 ∈ V
21shftfib 11342 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))
32eleq2d 2299 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ ((𝐹 shift 𝐴) “ {𝐵}) ↔ 𝑥 ∈ (𝐹 “ {(𝐵𝐴)})))
43iotabidv 5301 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (℩𝑥𝑥 ∈ ((𝐹 shift 𝐴) “ {𝐵})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐵𝐴)})))
5 simpr 110 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
6 dffv3g 5625 . . 3 (𝐵 ∈ ℂ → ((𝐹 shift 𝐴)‘𝐵) = (℩𝑥𝑥 ∈ ((𝐹 shift 𝐴) “ {𝐵})))
75, 6syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (℩𝑥𝑥 ∈ ((𝐹 shift 𝐴) “ {𝐵})))
8 simpl 109 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
95, 8subcld 8465 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
10 dffv3g 5625 . . 3 ((𝐵𝐴) ∈ ℂ → (𝐹‘(𝐵𝐴)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐵𝐴)})))
119, 10syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹‘(𝐵𝐴)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐵𝐴)})))
124, 7, 113eqtr4d 2272 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  {csn 3666  cima 4722  cio 5276  cfv 5318  (class class class)co 6007  cc 8005  cmin 8325   shift cshi 11333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-resscn 8099  ax-1cn 8100  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-sub 8327  df-shft 11334
This theorem is referenced by:  shftval2  11345  shftval4  11347  shftval5  11348  shftf  11349  shftvalg  11355  isumshft  12009
  Copyright terms: Public domain W3C validator