ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftval GIF version

Theorem shftval 10767
Description: Value of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 4-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵𝐴)))

Proof of Theorem shftval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . 5 𝐹 ∈ V
21shftfib 10765 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))
32eleq2d 2236 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ ((𝐹 shift 𝐴) “ {𝐵}) ↔ 𝑥 ∈ (𝐹 “ {(𝐵𝐴)})))
43iotabidv 5174 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (℩𝑥𝑥 ∈ ((𝐹 shift 𝐴) “ {𝐵})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐵𝐴)})))
5 simpr 109 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
6 dffv3g 5482 . . 3 (𝐵 ∈ ℂ → ((𝐹 shift 𝐴)‘𝐵) = (℩𝑥𝑥 ∈ ((𝐹 shift 𝐴) “ {𝐵})))
75, 6syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (℩𝑥𝑥 ∈ ((𝐹 shift 𝐴) “ {𝐵})))
8 simpl 108 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
95, 8subcld 8209 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
10 dffv3g 5482 . . 3 ((𝐵𝐴) ∈ ℂ → (𝐹‘(𝐵𝐴)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐵𝐴)})))
119, 10syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹‘(𝐵𝐴)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐵𝐴)})))
124, 7, 113eqtr4d 2208 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  {csn 3576  cima 4607  cio 5151  cfv 5188  (class class class)co 5842  cc 7751  cmin 8069   shift cshi 10756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-shft 10757
This theorem is referenced by:  shftval2  10768  shftval4  10770  shftval5  10771  shftf  10772  shftvalg  10778  isumshft  11431
  Copyright terms: Public domain W3C validator