ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvco2 GIF version

Theorem fvco2 5661
Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
fvco2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))

Proof of Theorem fvco2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imaco 5197 . . . . 5 ((𝐹𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋}))
2 fnsnfv 5651 . . . . . 6 ((𝐺 Fn 𝐴𝑋𝐴) → {(𝐺𝑋)} = (𝐺 “ {𝑋}))
32imaeq2d 5031 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐹 “ {(𝐺𝑋)}) = (𝐹 “ (𝐺 “ {𝑋})))
41, 3eqtr4id 2258 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺) “ {𝑋}) = (𝐹 “ {(𝐺𝑋)}))
54eleq2d 2276 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑥 ∈ ((𝐹𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
65iotabidv 5263 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
7 dffv3g 5585 . . 3 (𝑋𝐴 → ((𝐹𝐺)‘𝑋) = (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})))
87adantl 277 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})))
9 funfvex 5606 . . . 4 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝐺𝑋) ∈ V)
109funfni 5385 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) ∈ V)
11 dffv3g 5585 . . 3 ((𝐺𝑋) ∈ V → (𝐹‘(𝐺𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
1210, 11syl 14 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐹‘(𝐺𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
136, 8, 123eqtr4d 2249 1 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  {csn 3638  cima 4686  ccom 4687  cio 5239   Fn wfn 5275  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288
This theorem is referenced by:  fvco  5662  fvco3  5663  ofco  6190  updjudhcoinlf  7197  updjudhcoinrg  7198  updjud  7199  caseinl  7208  caseinr  7209  ctm  7226  enomnilem  7255  enmkvlem  7278  enwomnilem  7286  nninfctlemfo  12436  prdsidlem  13354  gsumwmhm  13405  prdsinvlem  13515  ringidvalg  13798  lidlvalg  14308  rspvalg  14309
  Copyright terms: Public domain W3C validator