ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvco2 GIF version

Theorem fvco2 5565
Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
fvco2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))

Proof of Theorem fvco2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imaco 5116 . . . . 5 ((𝐹𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋}))
2 fnsnfv 5555 . . . . . 6 ((𝐺 Fn 𝐴𝑋𝐴) → {(𝐺𝑋)} = (𝐺 “ {𝑋}))
32imaeq2d 4953 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐹 “ {(𝐺𝑋)}) = (𝐹 “ (𝐺 “ {𝑋})))
41, 3eqtr4id 2222 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺) “ {𝑋}) = (𝐹 “ {(𝐺𝑋)}))
54eleq2d 2240 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑥 ∈ ((𝐹𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
65iotabidv 5181 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
7 dffv3g 5492 . . 3 (𝑋𝐴 → ((𝐹𝐺)‘𝑋) = (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})))
87adantl 275 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})))
9 funfvex 5513 . . . 4 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝐺𝑋) ∈ V)
109funfni 5298 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) ∈ V)
11 dffv3g 5492 . . 3 ((𝐺𝑋) ∈ V → (𝐹‘(𝐺𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
1210, 11syl 14 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐹‘(𝐺𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
136, 8, 123eqtr4d 2213 1 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  {csn 3583  cima 4614  ccom 4615  cio 5158   Fn wfn 5193  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by:  fvco  5566  fvco3  5567  ofco  6079  updjudhcoinlf  7057  updjudhcoinrg  7058  updjud  7059  caseinl  7068  caseinr  7069  ctm  7086  enomnilem  7114  enmkvlem  7137  enwomnilem  7145
  Copyright terms: Public domain W3C validator