| Step | Hyp | Ref
| Expression |
| 1 | | plycj.4 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| 2 | | elply 14970 |
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) |
| 3 | 1, 2 | sylib 122 |
. . 3
⊢ (𝜑 → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) |
| 4 | 3 | simprd 114 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝐹 =
(𝑤 ∈ ℂ ↦
Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) |
| 5 | | simplrl 535 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝑛 ∈ ℕ0) |
| 6 | | plycj.2 |
. . . . . . 7
⊢ 𝐺 = ((∗ ∘ 𝐹) ∘
∗) |
| 7 | | simplrr 536 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) |
| 8 | | cnex 8003 |
. . . . . . . . . . . . 13
⊢ ℂ
∈ V |
| 9 | 8 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ∈
V) |
| 10 | 3 | simpld 112 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 11 | 9, 10 | ssexd 4173 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ V) |
| 12 | 11 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝑆 ∈ V) |
| 13 | | c0ex 8020 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
| 14 | 13 | snex 4218 |
. . . . . . . . . 10
⊢ {0}
∈ V |
| 15 | | unexg 4478 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ V ∧ {0} ∈ V)
→ (𝑆 ∪ {0}) ∈
V) |
| 16 | 12, 14, 15 | sylancl 413 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → (𝑆 ∪ {0}) ∈ V) |
| 17 | | nn0ex 9255 |
. . . . . . . . . 10
⊢
ℕ0 ∈ V |
| 18 | 17 | a1i 9 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → ℕ0 ∈
V) |
| 19 | 16, 18 | elmapd 6721 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0}))) |
| 20 | 7, 19 | mpbid 147 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
| 21 | | simpr 110 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) |
| 22 | | oveq1 5929 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑧 → (𝑤↑𝑗) = (𝑧↑𝑗)) |
| 23 | 22 | oveq2d 5938 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 → ((𝑎‘𝑗) · (𝑤↑𝑗)) = ((𝑎‘𝑗) · (𝑧↑𝑗))) |
| 24 | 23 | sumeq2sdv 11535 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)) = Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑧↑𝑗))) |
| 25 | 24 | cbvmptv 4129 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℂ ↦
Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑧↑𝑗))) |
| 26 | | fveq2 5558 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → (𝑎‘𝑗) = (𝑎‘𝑘)) |
| 27 | | oveq2 5930 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → (𝑧↑𝑗) = (𝑧↑𝑘)) |
| 28 | 26, 27 | oveq12d 5940 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → ((𝑎‘𝑗) · (𝑧↑𝑗)) = ((𝑎‘𝑘) · (𝑧↑𝑘))) |
| 29 | 28 | cbvsumv 11526 |
. . . . . . . . . 10
⊢
Σ𝑗 ∈
(0...𝑛)((𝑎‘𝑗) · (𝑧↑𝑗)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) |
| 30 | 29 | mpteq2i 4120 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℂ ↦
Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑧↑𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
| 31 | 25, 30 | eqtri 2217 |
. . . . . . . 8
⊢ (𝑤 ∈ ℂ ↦
Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
| 32 | 21, 31 | eqtrdi 2245 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 33 | 1 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝐹 ∈ (Poly‘𝑆)) |
| 34 | 5, 6, 20, 32, 33 | plycjlemc 14996 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((∗ ∘ 𝑎)‘𝑘) · (𝑧↑𝑘)))) |
| 35 | | 0cn 8018 |
. . . . . . . . . 10
⊢ 0 ∈
ℂ |
| 36 | | snssi 3766 |
. . . . . . . . . 10
⊢ (0 ∈
ℂ → {0} ⊆ ℂ) |
| 37 | 35, 36 | mp1i 10 |
. . . . . . . . 9
⊢ (𝜑 → {0} ⊆
ℂ) |
| 38 | 10, 37 | unssd 3339 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) |
| 39 | 38 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → (𝑆 ∪ {0}) ⊆
ℂ) |
| 40 | 20 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
| 41 | | elfznn0 10189 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
| 42 | 41 | adantl 277 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0) |
| 43 | | fvco3 5632 |
. . . . . . . . 9
⊢ ((𝑎:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0)
→ ((∗ ∘ 𝑎)‘𝑘) = (∗‘(𝑎‘𝑘))) |
| 44 | 40, 42, 43 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗ ∘ 𝑎)‘𝑘) = (∗‘(𝑎‘𝑘))) |
| 45 | 40, 42 | ffvelcdmd 5698 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ (𝑆 ∪ {0})) |
| 46 | | plycj.3 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) |
| 47 | 46 | ralrimiva 2570 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (∗‘𝑥) ∈ 𝑆) |
| 48 | | fveq2 5558 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑎‘𝑘) → (∗‘𝑥) = (∗‘(𝑎‘𝑘))) |
| 49 | 48 | eleq1d 2265 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑎‘𝑘) → ((∗‘𝑥) ∈ 𝑆 ↔ (∗‘(𝑎‘𝑘)) ∈ 𝑆)) |
| 50 | 49 | rspccv 2865 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
𝑆 (∗‘𝑥) ∈ 𝑆 → ((𝑎‘𝑘) ∈ 𝑆 → (∗‘(𝑎‘𝑘)) ∈ 𝑆)) |
| 51 | 47, 50 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑎‘𝑘) ∈ 𝑆 → (∗‘(𝑎‘𝑘)) ∈ 𝑆)) |
| 52 | | elsni 3640 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎‘𝑘) ∈ {0} → (𝑎‘𝑘) = 0) |
| 53 | 52 | fveq2d 5562 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎‘𝑘) ∈ {0} → (∗‘(𝑎‘𝑘)) = (∗‘0)) |
| 54 | | cj0 11066 |
. . . . . . . . . . . . . . 15
⊢
(∗‘0) = 0 |
| 55 | 53, 54 | eqtrdi 2245 |
. . . . . . . . . . . . . 14
⊢ ((𝑎‘𝑘) ∈ {0} → (∗‘(𝑎‘𝑘)) = 0) |
| 56 | 55, 35 | eqeltrdi 2287 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎‘𝑘) ∈ {0} → (∗‘(𝑎‘𝑘)) ∈ ℂ) |
| 57 | | elsng 3637 |
. . . . . . . . . . . . . . 15
⊢
((∗‘(𝑎‘𝑘)) ∈ ℂ →
((∗‘(𝑎‘𝑘)) ∈ {0} ↔ (∗‘(𝑎‘𝑘)) = 0)) |
| 58 | 56, 57 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝑎‘𝑘) ∈ {0} → ((∗‘(𝑎‘𝑘)) ∈ {0} ↔ (∗‘(𝑎‘𝑘)) = 0)) |
| 59 | 55, 58 | mpbird 167 |
. . . . . . . . . . . . 13
⊢ ((𝑎‘𝑘) ∈ {0} → (∗‘(𝑎‘𝑘)) ∈ {0}) |
| 60 | 59 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑎‘𝑘) ∈ {0} → (∗‘(𝑎‘𝑘)) ∈ {0})) |
| 61 | 51, 60 | orim12d 787 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑎‘𝑘) ∈ 𝑆 ∨ (𝑎‘𝑘) ∈ {0}) → ((∗‘(𝑎‘𝑘)) ∈ 𝑆 ∨ (∗‘(𝑎‘𝑘)) ∈ {0}))) |
| 62 | | elun 3304 |
. . . . . . . . . . 11
⊢ ((𝑎‘𝑘) ∈ (𝑆 ∪ {0}) ↔ ((𝑎‘𝑘) ∈ 𝑆 ∨ (𝑎‘𝑘) ∈ {0})) |
| 63 | | elun 3304 |
. . . . . . . . . . 11
⊢
((∗‘(𝑎‘𝑘)) ∈ (𝑆 ∪ {0}) ↔ ((∗‘(𝑎‘𝑘)) ∈ 𝑆 ∨ (∗‘(𝑎‘𝑘)) ∈ {0})) |
| 64 | 61, 62, 63 | 3imtr4g 205 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑎‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘(𝑎‘𝑘)) ∈ (𝑆 ∪ {0}))) |
| 65 | 64 | ad3antrrr 492 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘(𝑎‘𝑘)) ∈ (𝑆 ∪ {0}))) |
| 66 | 45, 65 | mpd 13 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝑎‘𝑘)) ∈ (𝑆 ∪ {0})) |
| 67 | 44, 66 | eqeltrd 2273 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗ ∘ 𝑎)‘𝑘) ∈ (𝑆 ∪ {0})) |
| 68 | 39, 5, 67 | elplyd 14977 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((∗ ∘ 𝑎)‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 69 | 34, 68 | eqeltrd 2273 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝐺 ∈ (Poly‘(𝑆 ∪ {0}))) |
| 70 | | plyun0 14972 |
. . . . 5
⊢
(Poly‘(𝑆 ∪
{0})) = (Poly‘𝑆) |
| 71 | 69, 70 | eleqtrdi 2289 |
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝐺 ∈ (Poly‘𝑆)) |
| 72 | 71 | ex 115 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))) → 𝐺 ∈ (Poly‘𝑆))) |
| 73 | 72 | rexlimdvva 2622 |
. 2
⊢ (𝜑 → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝐹 =
(𝑤 ∈ ℂ ↦
Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))) → 𝐺 ∈ (Poly‘𝑆))) |
| 74 | 4, 73 | mpd 13 |
1
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |