Step | Hyp | Ref
| Expression |
1 | | plycj.4 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
2 | | elply 14905 |
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) |
3 | 1, 2 | sylib 122 |
. . 3
⊢ (𝜑 → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) |
4 | 3 | simprd 114 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝐹 =
(𝑤 ∈ ℂ ↦
Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) |
5 | | simplrl 535 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝑛 ∈ ℕ0) |
6 | | plycj.2 |
. . . . . . 7
⊢ 𝐺 = ((∗ ∘ 𝐹) ∘
∗) |
7 | | simplrr 536 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) |
8 | | cnex 7998 |
. . . . . . . . . . . . 13
⊢ ℂ
∈ V |
9 | 8 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ∈
V) |
10 | 3 | simpld 112 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
11 | 9, 10 | ssexd 4170 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ V) |
12 | 11 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝑆 ∈ V) |
13 | | c0ex 8015 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
14 | 13 | snex 4215 |
. . . . . . . . . 10
⊢ {0}
∈ V |
15 | | unexg 4475 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ V ∧ {0} ∈ V)
→ (𝑆 ∪ {0}) ∈
V) |
16 | 12, 14, 15 | sylancl 413 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → (𝑆 ∪ {0}) ∈ V) |
17 | | nn0ex 9249 |
. . . . . . . . . 10
⊢
ℕ0 ∈ V |
18 | 17 | a1i 9 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → ℕ0 ∈
V) |
19 | 16, 18 | elmapd 6718 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0}))) |
20 | 7, 19 | mpbid 147 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
21 | | simpr 110 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) |
22 | | oveq1 5926 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑧 → (𝑤↑𝑗) = (𝑧↑𝑗)) |
23 | 22 | oveq2d 5935 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 → ((𝑎‘𝑗) · (𝑤↑𝑗)) = ((𝑎‘𝑗) · (𝑧↑𝑗))) |
24 | 23 | sumeq2sdv 11516 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)) = Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑧↑𝑗))) |
25 | 24 | cbvmptv 4126 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℂ ↦
Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑧↑𝑗))) |
26 | | fveq2 5555 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → (𝑎‘𝑗) = (𝑎‘𝑘)) |
27 | | oveq2 5927 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → (𝑧↑𝑗) = (𝑧↑𝑘)) |
28 | 26, 27 | oveq12d 5937 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → ((𝑎‘𝑗) · (𝑧↑𝑗)) = ((𝑎‘𝑘) · (𝑧↑𝑘))) |
29 | 28 | cbvsumv 11507 |
. . . . . . . . . 10
⊢
Σ𝑗 ∈
(0...𝑛)((𝑎‘𝑗) · (𝑧↑𝑗)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) |
30 | 29 | mpteq2i 4117 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℂ ↦
Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑧↑𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
31 | 25, 30 | eqtri 2214 |
. . . . . . . 8
⊢ (𝑤 ∈ ℂ ↦
Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
32 | 21, 31 | eqtrdi 2242 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
33 | 1 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝐹 ∈ (Poly‘𝑆)) |
34 | 5, 6, 20, 32, 33 | plycjlemc 14930 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((∗ ∘ 𝑎)‘𝑘) · (𝑧↑𝑘)))) |
35 | | 0cn 8013 |
. . . . . . . . . 10
⊢ 0 ∈
ℂ |
36 | | snssi 3763 |
. . . . . . . . . 10
⊢ (0 ∈
ℂ → {0} ⊆ ℂ) |
37 | 35, 36 | mp1i 10 |
. . . . . . . . 9
⊢ (𝜑 → {0} ⊆
ℂ) |
38 | 10, 37 | unssd 3336 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) |
39 | 38 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → (𝑆 ∪ {0}) ⊆
ℂ) |
40 | 20 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
41 | | elfznn0 10183 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
42 | 41 | adantl 277 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0) |
43 | | fvco3 5629 |
. . . . . . . . 9
⊢ ((𝑎:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0)
→ ((∗ ∘ 𝑎)‘𝑘) = (∗‘(𝑎‘𝑘))) |
44 | 40, 42, 43 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗ ∘ 𝑎)‘𝑘) = (∗‘(𝑎‘𝑘))) |
45 | 40, 42 | ffvelcdmd 5695 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ (𝑆 ∪ {0})) |
46 | | plycj.3 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) |
47 | 46 | ralrimiva 2567 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (∗‘𝑥) ∈ 𝑆) |
48 | | fveq2 5555 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑎‘𝑘) → (∗‘𝑥) = (∗‘(𝑎‘𝑘))) |
49 | 48 | eleq1d 2262 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑎‘𝑘) → ((∗‘𝑥) ∈ 𝑆 ↔ (∗‘(𝑎‘𝑘)) ∈ 𝑆)) |
50 | 49 | rspccv 2862 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
𝑆 (∗‘𝑥) ∈ 𝑆 → ((𝑎‘𝑘) ∈ 𝑆 → (∗‘(𝑎‘𝑘)) ∈ 𝑆)) |
51 | 47, 50 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑎‘𝑘) ∈ 𝑆 → (∗‘(𝑎‘𝑘)) ∈ 𝑆)) |
52 | | elsni 3637 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎‘𝑘) ∈ {0} → (𝑎‘𝑘) = 0) |
53 | 52 | fveq2d 5559 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎‘𝑘) ∈ {0} → (∗‘(𝑎‘𝑘)) = (∗‘0)) |
54 | | cj0 11048 |
. . . . . . . . . . . . . . 15
⊢
(∗‘0) = 0 |
55 | 53, 54 | eqtrdi 2242 |
. . . . . . . . . . . . . 14
⊢ ((𝑎‘𝑘) ∈ {0} → (∗‘(𝑎‘𝑘)) = 0) |
56 | 55, 35 | eqeltrdi 2284 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎‘𝑘) ∈ {0} → (∗‘(𝑎‘𝑘)) ∈ ℂ) |
57 | | elsng 3634 |
. . . . . . . . . . . . . . 15
⊢
((∗‘(𝑎‘𝑘)) ∈ ℂ →
((∗‘(𝑎‘𝑘)) ∈ {0} ↔ (∗‘(𝑎‘𝑘)) = 0)) |
58 | 56, 57 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝑎‘𝑘) ∈ {0} → ((∗‘(𝑎‘𝑘)) ∈ {0} ↔ (∗‘(𝑎‘𝑘)) = 0)) |
59 | 55, 58 | mpbird 167 |
. . . . . . . . . . . . 13
⊢ ((𝑎‘𝑘) ∈ {0} → (∗‘(𝑎‘𝑘)) ∈ {0}) |
60 | 59 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑎‘𝑘) ∈ {0} → (∗‘(𝑎‘𝑘)) ∈ {0})) |
61 | 51, 60 | orim12d 787 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑎‘𝑘) ∈ 𝑆 ∨ (𝑎‘𝑘) ∈ {0}) → ((∗‘(𝑎‘𝑘)) ∈ 𝑆 ∨ (∗‘(𝑎‘𝑘)) ∈ {0}))) |
62 | | elun 3301 |
. . . . . . . . . . 11
⊢ ((𝑎‘𝑘) ∈ (𝑆 ∪ {0}) ↔ ((𝑎‘𝑘) ∈ 𝑆 ∨ (𝑎‘𝑘) ∈ {0})) |
63 | | elun 3301 |
. . . . . . . . . . 11
⊢
((∗‘(𝑎‘𝑘)) ∈ (𝑆 ∪ {0}) ↔ ((∗‘(𝑎‘𝑘)) ∈ 𝑆 ∨ (∗‘(𝑎‘𝑘)) ∈ {0})) |
64 | 61, 62, 63 | 3imtr4g 205 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑎‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘(𝑎‘𝑘)) ∈ (𝑆 ∪ {0}))) |
65 | 64 | ad3antrrr 492 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘(𝑎‘𝑘)) ∈ (𝑆 ∪ {0}))) |
66 | 45, 65 | mpd 13 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝑎‘𝑘)) ∈ (𝑆 ∪ {0})) |
67 | 44, 66 | eqeltrd 2270 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗ ∘ 𝑎)‘𝑘) ∈ (𝑆 ∪ {0})) |
68 | 39, 5, 67 | elplyd 14912 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((∗ ∘ 𝑎)‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘(𝑆 ∪ {0}))) |
69 | 34, 68 | eqeltrd 2270 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝐺 ∈ (Poly‘(𝑆 ∪ {0}))) |
70 | | plyun0 14907 |
. . . . 5
⊢
(Poly‘(𝑆 ∪
{0})) = (Poly‘𝑆) |
71 | 69, 70 | eleqtrdi 2286 |
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) → 𝐺 ∈ (Poly‘𝑆)) |
72 | 71 | ex 115 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))) → 𝐺 ∈ (Poly‘𝑆))) |
73 | 72 | rexlimdvva 2619 |
. 2
⊢ (𝜑 → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝐹 =
(𝑤 ∈ ℂ ↦
Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))) → 𝐺 ∈ (Poly‘𝑆))) |
74 | 4, 73 | mpd 13 |
1
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |