ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycj GIF version

Theorem plycj 15400
Description: The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
plycj.3 ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)
plycj.4 (𝜑𝐹 ∈ (Poly‘𝑆))
Assertion
Ref Expression
plycj (𝜑𝐺 ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem plycj
Dummy variables 𝑘 𝑧 𝑎 𝑛 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycj.4 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 elply 15373 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))))
31, 2sylib 122 . . 3 (𝜑 → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))))
43simprd 114 . 2 (𝜑 → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))
5 simplrl 535 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝑛 ∈ ℕ0)
6 plycj.2 . . . . . . 7 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
7 simplrr 536 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
8 cnex 8091 . . . . . . . . . . . . 13 ℂ ∈ V
98a1i 9 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
103simpld 112 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℂ)
119, 10ssexd 4203 . . . . . . . . . . 11 (𝜑𝑆 ∈ V)
1211ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝑆 ∈ V)
13 c0ex 8108 . . . . . . . . . . 11 0 ∈ V
1413snex 4248 . . . . . . . . . 10 {0} ∈ V
15 unexg 4511 . . . . . . . . . 10 ((𝑆 ∈ V ∧ {0} ∈ V) → (𝑆 ∪ {0}) ∈ V)
1612, 14, 15sylancl 413 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → (𝑆 ∪ {0}) ∈ V)
17 nn0ex 9343 . . . . . . . . . 10 0 ∈ V
1817a1i 9 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → ℕ0 ∈ V)
1916, 18elmapd 6779 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
207, 19mpbid 147 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
21 simpr 110 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))
22 oveq1 5981 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑤𝑗) = (𝑧𝑗))
2322oveq2d 5990 . . . . . . . . . . 11 (𝑤 = 𝑧 → ((𝑎𝑗) · (𝑤𝑗)) = ((𝑎𝑗) · (𝑧𝑗)))
2423sumeq2sdv 11847 . . . . . . . . . 10 (𝑤 = 𝑧 → Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)) = Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑧𝑗)))
2524cbvmptv 4159 . . . . . . . . 9 (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑧𝑗)))
26 fveq2 5603 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑎𝑗) = (𝑎𝑘))
27 oveq2 5982 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑧𝑗) = (𝑧𝑘))
2826, 27oveq12d 5992 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝑎𝑗) · (𝑧𝑗)) = ((𝑎𝑘) · (𝑧𝑘)))
2928cbvsumv 11838 . . . . . . . . . 10 Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑧𝑗)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))
3029mpteq2i 4150 . . . . . . . . 9 (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑧𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))
3125, 30eqtri 2230 . . . . . . . 8 (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))
3221, 31eqtrdi 2258 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
331ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐹 ∈ (Poly‘𝑆))
345, 6, 20, 32, 33plycjlemc 15399 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((∗ ∘ 𝑎)‘𝑘) · (𝑧𝑘))))
35 0cn 8106 . . . . . . . . . 10 0 ∈ ℂ
36 snssi 3791 . . . . . . . . . 10 (0 ∈ ℂ → {0} ⊆ ℂ)
3735, 36mp1i 10 . . . . . . . . 9 (𝜑 → {0} ⊆ ℂ)
3810, 37unssd 3360 . . . . . . . 8 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
3938ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → (𝑆 ∪ {0}) ⊆ ℂ)
4020adantr 276 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
41 elfznn0 10278 . . . . . . . . . 10 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
4241adantl 277 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
43 fvco3 5678 . . . . . . . . 9 ((𝑎:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝑎)‘𝑘) = (∗‘(𝑎𝑘)))
4440, 42, 43syl2anc 411 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗ ∘ 𝑎)‘𝑘) = (∗‘(𝑎𝑘)))
4540, 42ffvelcdmd 5744 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ (𝑆 ∪ {0}))
46 plycj.3 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)
4746ralrimiva 2583 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝑆 (∗‘𝑥) ∈ 𝑆)
48 fveq2 5603 . . . . . . . . . . . . . . 15 (𝑥 = (𝑎𝑘) → (∗‘𝑥) = (∗‘(𝑎𝑘)))
4948eleq1d 2278 . . . . . . . . . . . . . 14 (𝑥 = (𝑎𝑘) → ((∗‘𝑥) ∈ 𝑆 ↔ (∗‘(𝑎𝑘)) ∈ 𝑆))
5049rspccv 2884 . . . . . . . . . . . . 13 (∀𝑥𝑆 (∗‘𝑥) ∈ 𝑆 → ((𝑎𝑘) ∈ 𝑆 → (∗‘(𝑎𝑘)) ∈ 𝑆))
5147, 50syl 14 . . . . . . . . . . . 12 (𝜑 → ((𝑎𝑘) ∈ 𝑆 → (∗‘(𝑎𝑘)) ∈ 𝑆))
52 elsni 3664 . . . . . . . . . . . . . . . 16 ((𝑎𝑘) ∈ {0} → (𝑎𝑘) = 0)
5352fveq2d 5607 . . . . . . . . . . . . . . 15 ((𝑎𝑘) ∈ {0} → (∗‘(𝑎𝑘)) = (∗‘0))
54 cj0 11378 . . . . . . . . . . . . . . 15 (∗‘0) = 0
5553, 54eqtrdi 2258 . . . . . . . . . . . . . 14 ((𝑎𝑘) ∈ {0} → (∗‘(𝑎𝑘)) = 0)
5655, 35eqeltrdi 2300 . . . . . . . . . . . . . . 15 ((𝑎𝑘) ∈ {0} → (∗‘(𝑎𝑘)) ∈ ℂ)
57 elsng 3661 . . . . . . . . . . . . . . 15 ((∗‘(𝑎𝑘)) ∈ ℂ → ((∗‘(𝑎𝑘)) ∈ {0} ↔ (∗‘(𝑎𝑘)) = 0))
5856, 57syl 14 . . . . . . . . . . . . . 14 ((𝑎𝑘) ∈ {0} → ((∗‘(𝑎𝑘)) ∈ {0} ↔ (∗‘(𝑎𝑘)) = 0))
5955, 58mpbird 167 . . . . . . . . . . . . 13 ((𝑎𝑘) ∈ {0} → (∗‘(𝑎𝑘)) ∈ {0})
6059a1i 9 . . . . . . . . . . . 12 (𝜑 → ((𝑎𝑘) ∈ {0} → (∗‘(𝑎𝑘)) ∈ {0}))
6151, 60orim12d 790 . . . . . . . . . . 11 (𝜑 → (((𝑎𝑘) ∈ 𝑆 ∨ (𝑎𝑘) ∈ {0}) → ((∗‘(𝑎𝑘)) ∈ 𝑆 ∨ (∗‘(𝑎𝑘)) ∈ {0})))
62 elun 3325 . . . . . . . . . . 11 ((𝑎𝑘) ∈ (𝑆 ∪ {0}) ↔ ((𝑎𝑘) ∈ 𝑆 ∨ (𝑎𝑘) ∈ {0}))
63 elun 3325 . . . . . . . . . . 11 ((∗‘(𝑎𝑘)) ∈ (𝑆 ∪ {0}) ↔ ((∗‘(𝑎𝑘)) ∈ 𝑆 ∨ (∗‘(𝑎𝑘)) ∈ {0}))
6461, 62, 633imtr4g 205 . . . . . . . . . 10 (𝜑 → ((𝑎𝑘) ∈ (𝑆 ∪ {0}) → (∗‘(𝑎𝑘)) ∈ (𝑆 ∪ {0})))
6564ad3antrrr 492 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) ∈ (𝑆 ∪ {0}) → (∗‘(𝑎𝑘)) ∈ (𝑆 ∪ {0})))
6645, 65mpd 13 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝑎𝑘)) ∈ (𝑆 ∪ {0}))
6744, 66eqeltrd 2286 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗ ∘ 𝑎)‘𝑘) ∈ (𝑆 ∪ {0}))
6839, 5, 67elplyd 15380 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((∗ ∘ 𝑎)‘𝑘) · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
6934, 68eqeltrd 2286 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐺 ∈ (Poly‘(𝑆 ∪ {0})))
70 plyun0 15375 . . . . 5 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
7169, 70eleqtrdi 2302 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐺 ∈ (Poly‘𝑆))
7271ex 115 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))) → 𝐺 ∈ (Poly‘𝑆)))
7372rexlimdvva 2636 . 2 (𝜑 → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))) → 𝐺 ∈ (Poly‘𝑆)))
744, 73mpd 13 1 (𝜑𝐺 ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 712   = wceq 1375  wcel 2180  wral 2488  wrex 2489  Vcvv 2779  cun 3175  wss 3177  {csn 3646  cmpt 4124  ccom 4700  wf 5290  cfv 5294  (class class class)co 5974  𝑚 cmap 6765  cc 7965  0cc0 7967   · cmul 7972  0cn0 9337  ...cfz 10172  cexp 10727  ccj 11316  Σcsu 11830  Polycply 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-map 6767  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-ply 15369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator