ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycj GIF version

Theorem plycj 15277
Description: The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
plycj.3 ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)
plycj.4 (𝜑𝐹 ∈ (Poly‘𝑆))
Assertion
Ref Expression
plycj (𝜑𝐺 ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem plycj
Dummy variables 𝑘 𝑧 𝑎 𝑛 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycj.4 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 elply 15250 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))))
31, 2sylib 122 . . 3 (𝜑 → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))))
43simprd 114 . 2 (𝜑 → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))
5 simplrl 535 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝑛 ∈ ℕ0)
6 plycj.2 . . . . . . 7 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
7 simplrr 536 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
8 cnex 8056 . . . . . . . . . . . . 13 ℂ ∈ V
98a1i 9 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
103simpld 112 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℂ)
119, 10ssexd 4188 . . . . . . . . . . 11 (𝜑𝑆 ∈ V)
1211ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝑆 ∈ V)
13 c0ex 8073 . . . . . . . . . . 11 0 ∈ V
1413snex 4233 . . . . . . . . . 10 {0} ∈ V
15 unexg 4494 . . . . . . . . . 10 ((𝑆 ∈ V ∧ {0} ∈ V) → (𝑆 ∪ {0}) ∈ V)
1612, 14, 15sylancl 413 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → (𝑆 ∪ {0}) ∈ V)
17 nn0ex 9308 . . . . . . . . . 10 0 ∈ V
1817a1i 9 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → ℕ0 ∈ V)
1916, 18elmapd 6756 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
207, 19mpbid 147 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
21 simpr 110 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))
22 oveq1 5958 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑤𝑗) = (𝑧𝑗))
2322oveq2d 5967 . . . . . . . . . . 11 (𝑤 = 𝑧 → ((𝑎𝑗) · (𝑤𝑗)) = ((𝑎𝑗) · (𝑧𝑗)))
2423sumeq2sdv 11725 . . . . . . . . . 10 (𝑤 = 𝑧 → Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)) = Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑧𝑗)))
2524cbvmptv 4144 . . . . . . . . 9 (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑧𝑗)))
26 fveq2 5583 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑎𝑗) = (𝑎𝑘))
27 oveq2 5959 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑧𝑗) = (𝑧𝑘))
2826, 27oveq12d 5969 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝑎𝑗) · (𝑧𝑗)) = ((𝑎𝑘) · (𝑧𝑘)))
2928cbvsumv 11716 . . . . . . . . . 10 Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑧𝑗)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))
3029mpteq2i 4135 . . . . . . . . 9 (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑧𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))
3125, 30eqtri 2227 . . . . . . . 8 (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))
3221, 31eqtrdi 2255 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
331ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐹 ∈ (Poly‘𝑆))
345, 6, 20, 32, 33plycjlemc 15276 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((∗ ∘ 𝑎)‘𝑘) · (𝑧𝑘))))
35 0cn 8071 . . . . . . . . . 10 0 ∈ ℂ
36 snssi 3779 . . . . . . . . . 10 (0 ∈ ℂ → {0} ⊆ ℂ)
3735, 36mp1i 10 . . . . . . . . 9 (𝜑 → {0} ⊆ ℂ)
3810, 37unssd 3350 . . . . . . . 8 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
3938ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → (𝑆 ∪ {0}) ⊆ ℂ)
4020adantr 276 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
41 elfznn0 10243 . . . . . . . . . 10 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
4241adantl 277 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
43 fvco3 5657 . . . . . . . . 9 ((𝑎:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝑎)‘𝑘) = (∗‘(𝑎𝑘)))
4440, 42, 43syl2anc 411 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗ ∘ 𝑎)‘𝑘) = (∗‘(𝑎𝑘)))
4540, 42ffvelcdmd 5723 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ (𝑆 ∪ {0}))
46 plycj.3 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)
4746ralrimiva 2580 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝑆 (∗‘𝑥) ∈ 𝑆)
48 fveq2 5583 . . . . . . . . . . . . . . 15 (𝑥 = (𝑎𝑘) → (∗‘𝑥) = (∗‘(𝑎𝑘)))
4948eleq1d 2275 . . . . . . . . . . . . . 14 (𝑥 = (𝑎𝑘) → ((∗‘𝑥) ∈ 𝑆 ↔ (∗‘(𝑎𝑘)) ∈ 𝑆))
5049rspccv 2875 . . . . . . . . . . . . 13 (∀𝑥𝑆 (∗‘𝑥) ∈ 𝑆 → ((𝑎𝑘) ∈ 𝑆 → (∗‘(𝑎𝑘)) ∈ 𝑆))
5147, 50syl 14 . . . . . . . . . . . 12 (𝜑 → ((𝑎𝑘) ∈ 𝑆 → (∗‘(𝑎𝑘)) ∈ 𝑆))
52 elsni 3652 . . . . . . . . . . . . . . . 16 ((𝑎𝑘) ∈ {0} → (𝑎𝑘) = 0)
5352fveq2d 5587 . . . . . . . . . . . . . . 15 ((𝑎𝑘) ∈ {0} → (∗‘(𝑎𝑘)) = (∗‘0))
54 cj0 11256 . . . . . . . . . . . . . . 15 (∗‘0) = 0
5553, 54eqtrdi 2255 . . . . . . . . . . . . . 14 ((𝑎𝑘) ∈ {0} → (∗‘(𝑎𝑘)) = 0)
5655, 35eqeltrdi 2297 . . . . . . . . . . . . . . 15 ((𝑎𝑘) ∈ {0} → (∗‘(𝑎𝑘)) ∈ ℂ)
57 elsng 3649 . . . . . . . . . . . . . . 15 ((∗‘(𝑎𝑘)) ∈ ℂ → ((∗‘(𝑎𝑘)) ∈ {0} ↔ (∗‘(𝑎𝑘)) = 0))
5856, 57syl 14 . . . . . . . . . . . . . 14 ((𝑎𝑘) ∈ {0} → ((∗‘(𝑎𝑘)) ∈ {0} ↔ (∗‘(𝑎𝑘)) = 0))
5955, 58mpbird 167 . . . . . . . . . . . . 13 ((𝑎𝑘) ∈ {0} → (∗‘(𝑎𝑘)) ∈ {0})
6059a1i 9 . . . . . . . . . . . 12 (𝜑 → ((𝑎𝑘) ∈ {0} → (∗‘(𝑎𝑘)) ∈ {0}))
6151, 60orim12d 788 . . . . . . . . . . 11 (𝜑 → (((𝑎𝑘) ∈ 𝑆 ∨ (𝑎𝑘) ∈ {0}) → ((∗‘(𝑎𝑘)) ∈ 𝑆 ∨ (∗‘(𝑎𝑘)) ∈ {0})))
62 elun 3315 . . . . . . . . . . 11 ((𝑎𝑘) ∈ (𝑆 ∪ {0}) ↔ ((𝑎𝑘) ∈ 𝑆 ∨ (𝑎𝑘) ∈ {0}))
63 elun 3315 . . . . . . . . . . 11 ((∗‘(𝑎𝑘)) ∈ (𝑆 ∪ {0}) ↔ ((∗‘(𝑎𝑘)) ∈ 𝑆 ∨ (∗‘(𝑎𝑘)) ∈ {0}))
6461, 62, 633imtr4g 205 . . . . . . . . . 10 (𝜑 → ((𝑎𝑘) ∈ (𝑆 ∪ {0}) → (∗‘(𝑎𝑘)) ∈ (𝑆 ∪ {0})))
6564ad3antrrr 492 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) ∈ (𝑆 ∪ {0}) → (∗‘(𝑎𝑘)) ∈ (𝑆 ∪ {0})))
6645, 65mpd 13 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝑎𝑘)) ∈ (𝑆 ∪ {0}))
6744, 66eqeltrd 2283 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗ ∘ 𝑎)‘𝑘) ∈ (𝑆 ∪ {0}))
6839, 5, 67elplyd 15257 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((∗ ∘ 𝑎)‘𝑘) · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
6934, 68eqeltrd 2283 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐺 ∈ (Poly‘(𝑆 ∪ {0})))
70 plyun0 15252 . . . . 5 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
7169, 70eleqtrdi 2299 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐺 ∈ (Poly‘𝑆))
7271ex 115 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))) → 𝐺 ∈ (Poly‘𝑆)))
7372rexlimdvva 2632 . 2 (𝜑 → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))) → 𝐺 ∈ (Poly‘𝑆)))
744, 73mpd 13 1 (𝜑𝐺 ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  wral 2485  wrex 2486  Vcvv 2773  cun 3165  wss 3167  {csn 3634  cmpt 4109  ccom 4683  wf 5272  cfv 5276  (class class class)co 5951  𝑚 cmap 6742  cc 7930  0cc0 7932   · cmul 7937  0cn0 9302  ...cfz 10137  cexp 10690  ccj 11194  Σcsu 11708  Polycply 15244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-map 6744  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709  df-ply 15246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator