ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycj GIF version

Theorem plycj 15081
Description: The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
plycj.3 ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)
plycj.4 (𝜑𝐹 ∈ (Poly‘𝑆))
Assertion
Ref Expression
plycj (𝜑𝐺 ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem plycj
Dummy variables 𝑘 𝑧 𝑎 𝑛 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycj.4 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 elply 15054 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))))
31, 2sylib 122 . . 3 (𝜑 → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))))
43simprd 114 . 2 (𝜑 → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))
5 simplrl 535 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝑛 ∈ ℕ0)
6 plycj.2 . . . . . . 7 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
7 simplrr 536 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
8 cnex 8020 . . . . . . . . . . . . 13 ℂ ∈ V
98a1i 9 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
103simpld 112 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℂ)
119, 10ssexd 4174 . . . . . . . . . . 11 (𝜑𝑆 ∈ V)
1211ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝑆 ∈ V)
13 c0ex 8037 . . . . . . . . . . 11 0 ∈ V
1413snex 4219 . . . . . . . . . 10 {0} ∈ V
15 unexg 4479 . . . . . . . . . 10 ((𝑆 ∈ V ∧ {0} ∈ V) → (𝑆 ∪ {0}) ∈ V)
1612, 14, 15sylancl 413 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → (𝑆 ∪ {0}) ∈ V)
17 nn0ex 9272 . . . . . . . . . 10 0 ∈ V
1817a1i 9 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → ℕ0 ∈ V)
1916, 18elmapd 6730 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
207, 19mpbid 147 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
21 simpr 110 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))
22 oveq1 5932 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑤𝑗) = (𝑧𝑗))
2322oveq2d 5941 . . . . . . . . . . 11 (𝑤 = 𝑧 → ((𝑎𝑗) · (𝑤𝑗)) = ((𝑎𝑗) · (𝑧𝑗)))
2423sumeq2sdv 11552 . . . . . . . . . 10 (𝑤 = 𝑧 → Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)) = Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑧𝑗)))
2524cbvmptv 4130 . . . . . . . . 9 (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑧𝑗)))
26 fveq2 5561 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑎𝑗) = (𝑎𝑘))
27 oveq2 5933 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑧𝑗) = (𝑧𝑘))
2826, 27oveq12d 5943 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝑎𝑗) · (𝑧𝑗)) = ((𝑎𝑘) · (𝑧𝑘)))
2928cbvsumv 11543 . . . . . . . . . 10 Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑧𝑗)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))
3029mpteq2i 4121 . . . . . . . . 9 (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑧𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))
3125, 30eqtri 2217 . . . . . . . 8 (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))
3221, 31eqtrdi 2245 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
331ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐹 ∈ (Poly‘𝑆))
345, 6, 20, 32, 33plycjlemc 15080 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((∗ ∘ 𝑎)‘𝑘) · (𝑧𝑘))))
35 0cn 8035 . . . . . . . . . 10 0 ∈ ℂ
36 snssi 3767 . . . . . . . . . 10 (0 ∈ ℂ → {0} ⊆ ℂ)
3735, 36mp1i 10 . . . . . . . . 9 (𝜑 → {0} ⊆ ℂ)
3810, 37unssd 3340 . . . . . . . 8 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
3938ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → (𝑆 ∪ {0}) ⊆ ℂ)
4020adantr 276 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
41 elfznn0 10206 . . . . . . . . . 10 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
4241adantl 277 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
43 fvco3 5635 . . . . . . . . 9 ((𝑎:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝑎)‘𝑘) = (∗‘(𝑎𝑘)))
4440, 42, 43syl2anc 411 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗ ∘ 𝑎)‘𝑘) = (∗‘(𝑎𝑘)))
4540, 42ffvelcdmd 5701 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ (𝑆 ∪ {0}))
46 plycj.3 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)
4746ralrimiva 2570 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝑆 (∗‘𝑥) ∈ 𝑆)
48 fveq2 5561 . . . . . . . . . . . . . . 15 (𝑥 = (𝑎𝑘) → (∗‘𝑥) = (∗‘(𝑎𝑘)))
4948eleq1d 2265 . . . . . . . . . . . . . 14 (𝑥 = (𝑎𝑘) → ((∗‘𝑥) ∈ 𝑆 ↔ (∗‘(𝑎𝑘)) ∈ 𝑆))
5049rspccv 2865 . . . . . . . . . . . . 13 (∀𝑥𝑆 (∗‘𝑥) ∈ 𝑆 → ((𝑎𝑘) ∈ 𝑆 → (∗‘(𝑎𝑘)) ∈ 𝑆))
5147, 50syl 14 . . . . . . . . . . . 12 (𝜑 → ((𝑎𝑘) ∈ 𝑆 → (∗‘(𝑎𝑘)) ∈ 𝑆))
52 elsni 3641 . . . . . . . . . . . . . . . 16 ((𝑎𝑘) ∈ {0} → (𝑎𝑘) = 0)
5352fveq2d 5565 . . . . . . . . . . . . . . 15 ((𝑎𝑘) ∈ {0} → (∗‘(𝑎𝑘)) = (∗‘0))
54 cj0 11083 . . . . . . . . . . . . . . 15 (∗‘0) = 0
5553, 54eqtrdi 2245 . . . . . . . . . . . . . 14 ((𝑎𝑘) ∈ {0} → (∗‘(𝑎𝑘)) = 0)
5655, 35eqeltrdi 2287 . . . . . . . . . . . . . . 15 ((𝑎𝑘) ∈ {0} → (∗‘(𝑎𝑘)) ∈ ℂ)
57 elsng 3638 . . . . . . . . . . . . . . 15 ((∗‘(𝑎𝑘)) ∈ ℂ → ((∗‘(𝑎𝑘)) ∈ {0} ↔ (∗‘(𝑎𝑘)) = 0))
5856, 57syl 14 . . . . . . . . . . . . . 14 ((𝑎𝑘) ∈ {0} → ((∗‘(𝑎𝑘)) ∈ {0} ↔ (∗‘(𝑎𝑘)) = 0))
5955, 58mpbird 167 . . . . . . . . . . . . 13 ((𝑎𝑘) ∈ {0} → (∗‘(𝑎𝑘)) ∈ {0})
6059a1i 9 . . . . . . . . . . . 12 (𝜑 → ((𝑎𝑘) ∈ {0} → (∗‘(𝑎𝑘)) ∈ {0}))
6151, 60orim12d 787 . . . . . . . . . . 11 (𝜑 → (((𝑎𝑘) ∈ 𝑆 ∨ (𝑎𝑘) ∈ {0}) → ((∗‘(𝑎𝑘)) ∈ 𝑆 ∨ (∗‘(𝑎𝑘)) ∈ {0})))
62 elun 3305 . . . . . . . . . . 11 ((𝑎𝑘) ∈ (𝑆 ∪ {0}) ↔ ((𝑎𝑘) ∈ 𝑆 ∨ (𝑎𝑘) ∈ {0}))
63 elun 3305 . . . . . . . . . . 11 ((∗‘(𝑎𝑘)) ∈ (𝑆 ∪ {0}) ↔ ((∗‘(𝑎𝑘)) ∈ 𝑆 ∨ (∗‘(𝑎𝑘)) ∈ {0}))
6461, 62, 633imtr4g 205 . . . . . . . . . 10 (𝜑 → ((𝑎𝑘) ∈ (𝑆 ∪ {0}) → (∗‘(𝑎𝑘)) ∈ (𝑆 ∪ {0})))
6564ad3antrrr 492 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) ∈ (𝑆 ∪ {0}) → (∗‘(𝑎𝑘)) ∈ (𝑆 ∪ {0})))
6645, 65mpd 13 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝑎𝑘)) ∈ (𝑆 ∪ {0}))
6744, 66eqeltrd 2273 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗ ∘ 𝑎)‘𝑘) ∈ (𝑆 ∪ {0}))
6839, 5, 67elplyd 15061 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((∗ ∘ 𝑎)‘𝑘) · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
6934, 68eqeltrd 2273 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐺 ∈ (Poly‘(𝑆 ∪ {0})))
70 plyun0 15056 . . . . 5 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
7169, 70eleqtrdi 2289 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))) → 𝐺 ∈ (Poly‘𝑆))
7271ex 115 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))) → 𝐺 ∈ (Poly‘𝑆)))
7372rexlimdvva 2622 . 2 (𝜑 → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))) → 𝐺 ∈ (Poly‘𝑆)))
744, 73mpd 13 1 (𝜑𝐺 ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  cun 3155  wss 3157  {csn 3623  cmpt 4095  ccom 4668  wf 5255  cfv 5259  (class class class)co 5925  𝑚 cmap 6716  cc 7894  0cc0 7896   · cmul 7901  0cn0 9266  ...cfz 10100  cexp 10647  ccj 11021  Σcsu 11535  Polycply 15048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ply 15050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator