ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  kerf1ghm GIF version

Theorem kerf1ghm 13404
Description: A group homomorphism 𝐹 is injective if and only if its kernel is the singleton {𝑁}. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
Hypotheses
Ref Expression
f1ghm0to0.a 𝐴 = (Base‘𝑅)
f1ghm0to0.b 𝐵 = (Base‘𝑆)
f1ghm0to0.n 𝑁 = (0g𝑅)
f1ghm0to0.0 0 = (0g𝑆)
Assertion
Ref Expression
kerf1ghm (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴1-1𝐵 ↔ (𝐹 “ { 0 }) = {𝑁}))

Proof of Theorem kerf1ghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵))
2 f1fn 5465 . . . . . . . . . . 11 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
32adantl 277 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → 𝐹 Fn 𝐴)
4 elpreima 5681 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ { 0 })))
53, 4syl 14 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ { 0 })))
65biimpa 296 . . . . . . . 8 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → (𝑥𝐴 ∧ (𝐹𝑥) ∈ { 0 }))
76simpld 112 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → 𝑥𝐴)
86simprd 114 . . . . . . . 8 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → (𝐹𝑥) ∈ { 0 })
9 elsng 3637 . . . . . . . . 9 ((𝐹𝑥) ∈ { 0 } → ((𝐹𝑥) ∈ { 0 } ↔ (𝐹𝑥) = 0 ))
108, 9syl 14 . . . . . . . 8 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → ((𝐹𝑥) ∈ { 0 } ↔ (𝐹𝑥) = 0 ))
118, 10mpbid 147 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → (𝐹𝑥) = 0 )
12 f1ghm0to0.a . . . . . . . . . . 11 𝐴 = (Base‘𝑅)
13 f1ghm0to0.b . . . . . . . . . . 11 𝐵 = (Base‘𝑆)
14 f1ghm0to0.n . . . . . . . . . . 11 𝑁 = (0g𝑅)
15 f1ghm0to0.0 . . . . . . . . . . 11 0 = (0g𝑆)
1612, 13, 14, 15f1ghm0to0 13402 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
1716biimpd 144 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
18173expa 1205 . . . . . . . 8 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
1918imp 124 . . . . . . 7 ((((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥𝐴) ∧ (𝐹𝑥) = 0 ) → 𝑥 = 𝑁)
201, 7, 11, 19syl21anc 1248 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → 𝑥 = 𝑁)
2120ex 115 . . . . 5 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → (𝑥 ∈ (𝐹 “ { 0 }) → 𝑥 = 𝑁))
22 velsn 3639 . . . . 5 (𝑥 ∈ {𝑁} ↔ 𝑥 = 𝑁)
2321, 22imbitrrdi 162 . . . 4 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → (𝑥 ∈ (𝐹 “ { 0 }) → 𝑥 ∈ {𝑁}))
2423ssrdv 3189 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → (𝐹 “ { 0 }) ⊆ {𝑁})
25 ghmgrp1 13375 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp)
2612, 14grpidcl 13161 . . . . . . 7 (𝑅 ∈ Grp → 𝑁𝐴)
2725, 26syl 14 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑁𝐴)
2814, 15ghmid 13379 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹𝑁) = 0 )
2912, 13ghmf 13377 . . . . . . . . 9 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐴𝐵)
3029, 27ffvelcdmd 5698 . . . . . . . 8 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹𝑁) ∈ 𝐵)
31 elsng 3637 . . . . . . . 8 ((𝐹𝑁) ∈ 𝐵 → ((𝐹𝑁) ∈ { 0 } ↔ (𝐹𝑁) = 0 ))
3230, 31syl 14 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → ((𝐹𝑁) ∈ { 0 } ↔ (𝐹𝑁) = 0 ))
3328, 32mpbird 167 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹𝑁) ∈ { 0 })
34 ffn 5407 . . . . . . 7 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
35 elpreima 5681 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑁 ∈ (𝐹 “ { 0 }) ↔ (𝑁𝐴 ∧ (𝐹𝑁) ∈ { 0 })))
3629, 34, 353syl 17 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝑁 ∈ (𝐹 “ { 0 }) ↔ (𝑁𝐴 ∧ (𝐹𝑁) ∈ { 0 })))
3727, 33, 36mpbir2and 946 . . . . 5 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑁 ∈ (𝐹 “ { 0 }))
3837snssd 3767 . . . 4 (𝐹 ∈ (𝑅 GrpHom 𝑆) → {𝑁} ⊆ (𝐹 “ { 0 }))
3938adantr 276 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → {𝑁} ⊆ (𝐹 “ { 0 }))
4024, 39eqssd 3200 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → (𝐹 “ { 0 }) = {𝑁})
4129adantr 276 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝐹 “ { 0 }) = {𝑁}) → 𝐹:𝐴𝐵)
42 simpl 109 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
43 simpr2l 1058 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥𝐴)
44 simpr2r 1059 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑦𝐴)
45 simpr3 1007 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹𝑥) = (𝐹𝑦))
46 eqid 2196 . . . . . . . . . . . 12 (𝐹 “ { 0 }) = (𝐹 “ { 0 })
47 eqid 2196 . . . . . . . . . . . 12 (-g𝑅) = (-g𝑅)
4812, 15, 46, 47ghmeqker 13401 . . . . . . . . . . 11 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥(-g𝑅)𝑦) ∈ (𝐹 “ { 0 })))
4948biimpa 296 . . . . . . . . . 10 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥(-g𝑅)𝑦) ∈ (𝐹 “ { 0 }))
5042, 43, 44, 45, 49syl31anc 1252 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑥(-g𝑅)𝑦) ∈ (𝐹 “ { 0 }))
51 simpr1 1005 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 “ { 0 }) = {𝑁})
5250, 51eleqtrd 2275 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑥(-g𝑅)𝑦) ∈ {𝑁})
53 simp2 1000 . . . . . . . . . 10 (((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥𝐴𝑦𝐴))
5412, 47grpsubcl 13212 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑥𝐴𝑦𝐴) → (𝑥(-g𝑅)𝑦) ∈ 𝐴)
55543expb 1206 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ (𝑥𝐴𝑦𝐴)) → (𝑥(-g𝑅)𝑦) ∈ 𝐴)
5625, 53, 55syl2an 289 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑥(-g𝑅)𝑦) ∈ 𝐴)
57 elsng 3637 . . . . . . . . 9 ((𝑥(-g𝑅)𝑦) ∈ 𝐴 → ((𝑥(-g𝑅)𝑦) ∈ {𝑁} ↔ (𝑥(-g𝑅)𝑦) = 𝑁))
5856, 57syl 14 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑥(-g𝑅)𝑦) ∈ {𝑁} ↔ (𝑥(-g𝑅)𝑦) = 𝑁))
5952, 58mpbid 147 . . . . . . 7 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑥(-g𝑅)𝑦) = 𝑁)
6025adantr 276 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑅 ∈ Grp)
6112, 14, 47grpsubeq0 13218 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐴𝑦𝐴) → ((𝑥(-g𝑅)𝑦) = 𝑁𝑥 = 𝑦))
6260, 43, 44, 61syl3anc 1249 . . . . . . 7 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑥(-g𝑅)𝑦) = 𝑁𝑥 = 𝑦))
6359, 62mpbid 147 . . . . . 6 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥 = 𝑦)
64633anassrs 1231 . . . . 5 ((((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝐹 “ { 0 }) = {𝑁}) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
6564ex 115 . . . 4 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝐹 “ { 0 }) = {𝑁}) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6665ralrimivva 2579 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝐹 “ { 0 }) = {𝑁}) → ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
67 dff13 5815 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6841, 66, 67sylanbrc 417 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝐹 “ { 0 }) = {𝑁}) → 𝐹:𝐴1-1𝐵)
6940, 68impbida 596 1 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴1-1𝐵 ↔ (𝐹 “ { 0 }) = {𝑁}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wral 2475  wss 3157  {csn 3622  ccnv 4662  cima 4666   Fn wfn 5253  wf 5254  1-1wf1 5255  cfv 5258  (class class class)co 5922  Basecbs 12678  0gc0g 12927  Grpcgrp 13132  -gcsg 13134   GrpHom cghm 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-ghm 13371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator