Step | Hyp | Ref
| Expression |
1 | | simpl 109 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵)) |
2 | | f1fn 5442 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
3 | 2 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 Fn 𝐴) |
4 | | elpreima 5656 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ { 0 }) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ { 0 }))) |
5 | 3, 4 | syl 14 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → (𝑥 ∈ (◡𝐹 “ { 0 }) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ { 0 }))) |
6 | 5 | biimpa 296 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ { 0 })) |
7 | 6 | simpld 112 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → 𝑥 ∈ 𝐴) |
8 | 6 | simprd 114 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → (𝐹‘𝑥) ∈ { 0 }) |
9 | | elsng 3622 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥) ∈ { 0 } → ((𝐹‘𝑥) ∈ { 0 } ↔ (𝐹‘𝑥) = 0 )) |
10 | 8, 9 | syl 14 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → ((𝐹‘𝑥) ∈ { 0 } ↔ (𝐹‘𝑥) = 0 )) |
11 | 8, 10 | mpbid 147 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → (𝐹‘𝑥) = 0 ) |
12 | | f1ghm0to0.a |
. . . . . . . . . . 11
⊢ 𝐴 = (Base‘𝑅) |
13 | | f1ghm0to0.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑆) |
14 | | f1ghm0to0.n |
. . . . . . . . . . 11
⊢ 𝑁 = (0g‘𝑅) |
15 | | f1ghm0to0.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑆) |
16 | 12, 13, 14, 15 | f1ghm0to0 13228 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 𝑁)) |
17 | 16 | biimpd 144 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) |
18 | 17 | 3expa 1205 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) |
19 | 18 | imp 124 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) = 0 ) → 𝑥 = 𝑁) |
20 | 1, 7, 11, 19 | syl21anc 1248 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → 𝑥 = 𝑁) |
21 | 20 | ex 115 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → (𝑥 ∈ (◡𝐹 “ { 0 }) → 𝑥 = 𝑁)) |
22 | | velsn 3624 |
. . . . 5
⊢ (𝑥 ∈ {𝑁} ↔ 𝑥 = 𝑁) |
23 | 21, 22 | imbitrrdi 162 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → (𝑥 ∈ (◡𝐹 “ { 0 }) → 𝑥 ∈ {𝑁})) |
24 | 23 | ssrdv 3176 |
. . 3
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → (◡𝐹 “ { 0 }) ⊆ {𝑁}) |
25 | | ghmgrp1 13201 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp) |
26 | 12, 14 | grpidcl 12988 |
. . . . . . 7
⊢ (𝑅 ∈ Grp → 𝑁 ∈ 𝐴) |
27 | 25, 26 | syl 14 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑁 ∈ 𝐴) |
28 | 14, 15 | ghmid 13205 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘𝑁) = 0 ) |
29 | 12, 13 | ghmf 13203 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐴⟶𝐵) |
30 | 29, 27 | ffvelcdmd 5673 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘𝑁) ∈ 𝐵) |
31 | | elsng 3622 |
. . . . . . . 8
⊢ ((𝐹‘𝑁) ∈ 𝐵 → ((𝐹‘𝑁) ∈ { 0 } ↔ (𝐹‘𝑁) = 0 )) |
32 | 30, 31 | syl 14 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → ((𝐹‘𝑁) ∈ { 0 } ↔ (𝐹‘𝑁) = 0 )) |
33 | 28, 32 | mpbird 167 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘𝑁) ∈ { 0 }) |
34 | | ffn 5384 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
35 | | elpreima 5656 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → (𝑁 ∈ (◡𝐹 “ { 0 }) ↔ (𝑁 ∈ 𝐴 ∧ (𝐹‘𝑁) ∈ { 0 }))) |
36 | 29, 34, 35 | 3syl 17 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝑁 ∈ (◡𝐹 “ { 0 }) ↔ (𝑁 ∈ 𝐴 ∧ (𝐹‘𝑁) ∈ { 0 }))) |
37 | 27, 33, 36 | mpbir2and 946 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑁 ∈ (◡𝐹 “ { 0 })) |
38 | 37 | snssd 3752 |
. . . 4
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → {𝑁} ⊆ (◡𝐹 “ { 0 })) |
39 | 38 | adantr 276 |
. . 3
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → {𝑁} ⊆ (◡𝐹 “ { 0 })) |
40 | 24, 39 | eqssd 3187 |
. 2
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → (◡𝐹 “ { 0 }) = {𝑁}) |
41 | 29 | adantr 276 |
. . 3
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (◡𝐹 “ { 0 }) = {𝑁}) → 𝐹:𝐴⟶𝐵) |
42 | | simpl 109 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
43 | | simpr2l 1058 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑥 ∈ 𝐴) |
44 | | simpr2r 1059 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑦 ∈ 𝐴) |
45 | | simpr3 1007 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹‘𝑥) = (𝐹‘𝑦)) |
46 | | eqid 2189 |
. . . . . . . . . . . 12
⊢ (◡𝐹 “ { 0 }) = (◡𝐹 “ { 0 }) |
47 | | eqid 2189 |
. . . . . . . . . . . 12
⊢
(-g‘𝑅) = (-g‘𝑅) |
48 | 12, 15, 46, 47 | ghmeqker 13227 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝑥(-g‘𝑅)𝑦) ∈ (◡𝐹 “ { 0 }))) |
49 | 48 | biimpa 296 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝑥(-g‘𝑅)𝑦) ∈ (◡𝐹 “ { 0 })) |
50 | 42, 43, 44, 45, 49 | syl31anc 1252 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑥(-g‘𝑅)𝑦) ∈ (◡𝐹 “ { 0 })) |
51 | | simpr1 1005 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (◡𝐹 “ { 0 }) = {𝑁}) |
52 | 50, 51 | eleqtrd 2268 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑥(-g‘𝑅)𝑦) ∈ {𝑁}) |
53 | | simp2 1000 |
. . . . . . . . . 10
⊢ (((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
54 | 12, 47 | grpsubcl 13039 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥(-g‘𝑅)𝑦) ∈ 𝐴) |
55 | 54 | 3expb 1206 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Grp ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥(-g‘𝑅)𝑦) ∈ 𝐴) |
56 | 25, 53, 55 | syl2an 289 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑥(-g‘𝑅)𝑦) ∈ 𝐴) |
57 | | elsng 3622 |
. . . . . . . . 9
⊢ ((𝑥(-g‘𝑅)𝑦) ∈ 𝐴 → ((𝑥(-g‘𝑅)𝑦) ∈ {𝑁} ↔ (𝑥(-g‘𝑅)𝑦) = 𝑁)) |
58 | 56, 57 | syl 14 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑥(-g‘𝑅)𝑦) ∈ {𝑁} ↔ (𝑥(-g‘𝑅)𝑦) = 𝑁)) |
59 | 52, 58 | mpbid 147 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑥(-g‘𝑅)𝑦) = 𝑁) |
60 | 25 | adantr 276 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑅 ∈ Grp) |
61 | 12, 14, 47 | grpsubeq0 13045 |
. . . . . . . 8
⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑥(-g‘𝑅)𝑦) = 𝑁 ↔ 𝑥 = 𝑦)) |
62 | 60, 43, 44, 61 | syl3anc 1249 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑥(-g‘𝑅)𝑦) = 𝑁 ↔ 𝑥 = 𝑦)) |
63 | 59, 62 | mpbid 147 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑥 = 𝑦) |
64 | 63 | 3anassrs 1231 |
. . . . 5
⊢ ((((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (◡𝐹 “ { 0 }) = {𝑁}) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 = 𝑦) |
65 | 64 | ex 115 |
. . . 4
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (◡𝐹 “ { 0 }) = {𝑁}) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
66 | 65 | ralrimivva 2572 |
. . 3
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (◡𝐹 “ { 0 }) = {𝑁}) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
67 | | dff13 5790 |
. . 3
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
68 | 41, 66, 67 | sylanbrc 417 |
. 2
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (◡𝐹 “ { 0 }) = {𝑁}) → 𝐹:𝐴–1-1→𝐵) |
69 | 40, 68 | impbida 596 |
1
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴–1-1→𝐵 ↔ (◡𝐹 “ { 0 }) = {𝑁})) |