ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nsg GIF version

Theorem 0nsg 13420
Description: The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
0nsg.z 0 = (0g𝐺)
Assertion
Ref Expression
0nsg (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))

Proof of Theorem 0nsg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nsg.z . . 3 0 = (0g𝐺)
210subg 13405 . 2 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
3 elsni 3641 . . . . . . . . 9 (𝑦 ∈ { 0 } → 𝑦 = 0 )
43ad2antll 491 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝑦 = 0 )
54oveq2d 5941 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐺) 0 ))
6 eqid 2196 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2196 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
86, 7, 1grprid 13234 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺) 0 ) = 𝑥)
98adantrr 479 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g𝐺) 0 ) = 𝑥)
105, 9eqtrd 2229 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g𝐺)𝑦) = 𝑥)
1110oveq1d 5940 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) = (𝑥(-g𝐺)𝑥))
12 eqid 2196 . . . . . . 7 (-g𝐺) = (-g𝐺)
136, 1, 12grpsubid 13286 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(-g𝐺)𝑥) = 0 )
1413adantrr 479 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(-g𝐺)𝑥) = 0 )
1511, 14eqtrd 2229 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) = 0 )
16 simpl 109 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝐺 ∈ Grp)
17 simprl 529 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝑥 ∈ (Base‘𝐺))
186, 1grpidcl 13231 . . . . . . . . 9 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
1918adantr 276 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 0 ∈ (Base‘𝐺))
204, 19eqeltrd 2273 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝑦 ∈ (Base‘𝐺))
216, 7, 16, 17, 20grpcld 13216 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
226, 12grpsubcl 13282 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ (Base‘𝐺))
2316, 21, 17, 22syl3anc 1249 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ (Base‘𝐺))
24 elsng 3638 . . . . 5 (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ (Base‘𝐺) → (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ { 0 } ↔ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) = 0 ))
2523, 24syl 14 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ { 0 } ↔ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) = 0 ))
2615, 25mpbird 167 . . 3 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ { 0 })
2726ralrimivva 2579 . 2 (𝐺 ∈ Grp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ { 0 } ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ { 0 })
286, 7, 12isnsg3 13413 . 2 ({ 0 } ∈ (NrmSGrp‘𝐺) ↔ ({ 0 } ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ { 0 } ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ { 0 }))
292, 27, 28sylanbrc 417 1 (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  {csn 3623  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  0gc0g 12958  Grpcgrp 13202  -gcsg 13204  SubGrpcsubg 13373  NrmSGrpcnsg 13374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-submnd 13162  df-grp 13205  df-minusg 13206  df-sbg 13207  df-subg 13376  df-nsg 13377
This theorem is referenced by:  0idnsgd  13422  1nsgtrivd  13425  ghmker  13476
  Copyright terms: Public domain W3C validator