ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nsg GIF version

Theorem 0nsg 13492
Description: The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
0nsg.z 0 = (0g𝐺)
Assertion
Ref Expression
0nsg (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))

Proof of Theorem 0nsg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nsg.z . . 3 0 = (0g𝐺)
210subg 13477 . 2 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
3 elsni 3650 . . . . . . . . 9 (𝑦 ∈ { 0 } → 𝑦 = 0 )
43ad2antll 491 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝑦 = 0 )
54oveq2d 5959 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐺) 0 ))
6 eqid 2204 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2204 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
86, 7, 1grprid 13306 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺) 0 ) = 𝑥)
98adantrr 479 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g𝐺) 0 ) = 𝑥)
105, 9eqtrd 2237 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g𝐺)𝑦) = 𝑥)
1110oveq1d 5958 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) = (𝑥(-g𝐺)𝑥))
12 eqid 2204 . . . . . . 7 (-g𝐺) = (-g𝐺)
136, 1, 12grpsubid 13358 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(-g𝐺)𝑥) = 0 )
1413adantrr 479 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(-g𝐺)𝑥) = 0 )
1511, 14eqtrd 2237 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) = 0 )
16 simpl 109 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝐺 ∈ Grp)
17 simprl 529 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝑥 ∈ (Base‘𝐺))
186, 1grpidcl 13303 . . . . . . . . 9 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
1918adantr 276 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 0 ∈ (Base‘𝐺))
204, 19eqeltrd 2281 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝑦 ∈ (Base‘𝐺))
216, 7, 16, 17, 20grpcld 13288 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
226, 12grpsubcl 13354 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ (Base‘𝐺))
2316, 21, 17, 22syl3anc 1249 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ (Base‘𝐺))
24 elsng 3647 . . . . 5 (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ (Base‘𝐺) → (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ { 0 } ↔ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) = 0 ))
2523, 24syl 14 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ { 0 } ↔ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) = 0 ))
2615, 25mpbird 167 . . 3 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ { 0 })
2726ralrimivva 2587 . 2 (𝐺 ∈ Grp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ { 0 } ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ { 0 })
286, 7, 12isnsg3 13485 . 2 ({ 0 } ∈ (NrmSGrp‘𝐺) ↔ ({ 0 } ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ { 0 } ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ { 0 }))
292, 27, 28sylanbrc 417 1 (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wral 2483  {csn 3632  cfv 5270  (class class class)co 5943  Basecbs 12774  +gcplusg 12851  0gc0g 13030  Grpcgrp 13274  -gcsg 13276  SubGrpcsubg 13445  NrmSGrpcnsg 13446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-iress 12782  df-plusg 12864  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-submnd 13234  df-grp 13277  df-minusg 13278  df-sbg 13279  df-subg 13448  df-nsg 13449
This theorem is referenced by:  0idnsgd  13494  1nsgtrivd  13497  ghmker  13548
  Copyright terms: Public domain W3C validator