| Step | Hyp | Ref
| Expression |
| 1 | | 0nsg.z |
. . 3
⊢ 0 =
(0g‘𝐺) |
| 2 | 1 | 0subg 13329 |
. 2
⊢ (𝐺 ∈ Grp → { 0 } ∈
(SubGrp‘𝐺)) |
| 3 | | elsni 3640 |
. . . . . . . . 9
⊢ (𝑦 ∈ { 0 } → 𝑦 = 0 ) |
| 4 | 3 | ad2antll 491 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝑦 = 0 ) |
| 5 | 4 | oveq2d 5938 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐺) 0 )) |
| 6 | | eqid 2196 |
. . . . . . . . 9
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 7 | | eqid 2196 |
. . . . . . . . 9
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 8 | 6, 7, 1 | grprid 13164 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
| 9 | 8 | adantrr 479 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
| 10 | 5, 9 | eqtrd 2229 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g‘𝐺)𝑦) = 𝑥) |
| 11 | 10 | oveq1d 5937 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) = (𝑥(-g‘𝐺)𝑥)) |
| 12 | | eqid 2196 |
. . . . . . 7
⊢
(-g‘𝐺) = (-g‘𝐺) |
| 13 | 6, 1, 12 | grpsubid 13216 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(-g‘𝐺)𝑥) = 0 ) |
| 14 | 13 | adantrr 479 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(-g‘𝐺)𝑥) = 0 ) |
| 15 | 11, 14 | eqtrd 2229 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) = 0 ) |
| 16 | | simpl 109 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝐺 ∈ Grp) |
| 17 | | simprl 529 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝑥 ∈ (Base‘𝐺)) |
| 18 | 6, 1 | grpidcl 13161 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp → 0 ∈
(Base‘𝐺)) |
| 19 | 18 | adantr 276 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 0 ∈
(Base‘𝐺)) |
| 20 | 4, 19 | eqeltrd 2273 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝑦 ∈ (Base‘𝐺)) |
| 21 | 6, 7, 16, 17, 20 | grpcld 13146 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 22 | 6, 12 | grpsubcl 13212 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ (Base‘𝐺)) |
| 23 | 16, 21, 17, 22 | syl3anc 1249 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ (Base‘𝐺)) |
| 24 | | elsng 3637 |
. . . . 5
⊢ (((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ (Base‘𝐺) → (((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 } ↔ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) = 0 )) |
| 25 | 23, 24 | syl 14 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 } ↔ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) = 0 )) |
| 26 | 15, 25 | mpbird 167 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 }) |
| 27 | 26 | ralrimivva 2579 |
. 2
⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ { 0 } ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 }) |
| 28 | 6, 7, 12 | isnsg3 13337 |
. 2
⊢ ({ 0 } ∈
(NrmSGrp‘𝐺) ↔ ({
0 }
∈ (SubGrp‘𝐺)
∧ ∀𝑥 ∈
(Base‘𝐺)∀𝑦 ∈ { 0 } ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 })) |
| 29 | 2, 27, 28 | sylanbrc 417 |
1
⊢ (𝐺 ∈ Grp → { 0 } ∈
(NrmSGrp‘𝐺)) |