Proof of Theorem tpfidceq
| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-tp 3630 | 
. 2
⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | 
| 2 |   | tpfidceq.c | 
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝐷) | 
| 3 |   | snssg 3756 | 
. . . . . . 7
⊢ (𝐶 ∈ 𝐷 → (𝐶 ∈ {𝐴, 𝐵} ↔ {𝐶} ⊆ {𝐴, 𝐵})) | 
| 4 | 2, 3 | syl 14 | 
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ {𝐴, 𝐵} ↔ {𝐶} ⊆ {𝐴, 𝐵})) | 
| 5 | 4 | biimpa 296 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ {𝐴, 𝐵}) → {𝐶} ⊆ {𝐴, 𝐵}) | 
| 6 |   | ssequn2 3336 | 
. . . . 5
⊢ ({𝐶} ⊆ {𝐴, 𝐵} ↔ ({𝐴, 𝐵} ∪ {𝐶}) = {𝐴, 𝐵}) | 
| 7 | 5, 6 | sylib 122 | 
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ {𝐴, 𝐵}) → ({𝐴, 𝐵} ∪ {𝐶}) = {𝐴, 𝐵}) | 
| 8 |   | tpfidceq.a | 
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝐷) | 
| 9 |   | tpfidceq.b | 
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝐷) | 
| 10 |   | tpfidceq.dc | 
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 DECID 𝑥 = 𝑦) | 
| 11 | 8, 9, 10 | prfidceq 6989 | 
. . . . 5
⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) | 
| 12 | 11 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ {𝐴, 𝐵}) → {𝐴, 𝐵} ∈ Fin) | 
| 13 | 7, 12 | eqeltrd 2273 | 
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ {𝐴, 𝐵}) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin) | 
| 14 | 11 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ {𝐴, 𝐵}) → {𝐴, 𝐵} ∈ Fin) | 
| 15 | 2 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ {𝐴, 𝐵}) → 𝐶 ∈ 𝐷) | 
| 16 |   | simpr 110 | 
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ {𝐴, 𝐵}) → ¬ 𝐶 ∈ {𝐴, 𝐵}) | 
| 17 |   | unsnfi 6980 | 
. . . 4
⊢ (({𝐴, 𝐵} ∈ Fin ∧ 𝐶 ∈ 𝐷 ∧ ¬ 𝐶 ∈ {𝐴, 𝐵}) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin) | 
| 18 | 14, 15, 16, 17 | syl3anc 1249 | 
. . 3
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ {𝐴, 𝐵}) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin) | 
| 19 |   | eqeq1 2203 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝐶 → (𝑥 = 𝑦 ↔ 𝐶 = 𝑦)) | 
| 20 | 19 | dcbid 839 | 
. . . . . . . . 9
⊢ (𝑥 = 𝐶 → (DECID 𝑥 = 𝑦 ↔ DECID 𝐶 = 𝑦)) | 
| 21 |   | eqeq2 2206 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝐴 → (𝐶 = 𝑦 ↔ 𝐶 = 𝐴)) | 
| 22 | 21 | dcbid 839 | 
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → (DECID 𝐶 = 𝑦 ↔ DECID 𝐶 = 𝐴)) | 
| 23 | 20, 22 | rspc2va 2882 | 
. . . . . . . 8
⊢ (((𝐶 ∈ 𝐷 ∧ 𝐴 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 DECID 𝑥 = 𝑦) → DECID 𝐶 = 𝐴) | 
| 24 | 2, 8, 10, 23 | syl21anc 1248 | 
. . . . . . 7
⊢ (𝜑 → DECID 𝐶 = 𝐴) | 
| 25 |   | elsng 3637 | 
. . . . . . . . 9
⊢ (𝐶 ∈ 𝐷 → (𝐶 ∈ {𝐴} ↔ 𝐶 = 𝐴)) | 
| 26 | 2, 25 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → (𝐶 ∈ {𝐴} ↔ 𝐶 = 𝐴)) | 
| 27 | 26 | dcbid 839 | 
. . . . . . 7
⊢ (𝜑 → (DECID
𝐶 ∈ {𝐴} ↔ DECID 𝐶 = 𝐴)) | 
| 28 | 24, 27 | mpbird 167 | 
. . . . . 6
⊢ (𝜑 → DECID 𝐶 ∈ {𝐴}) | 
| 29 |   | eqeq2 2206 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝐵 → (𝐶 = 𝑦 ↔ 𝐶 = 𝐵)) | 
| 30 | 29 | dcbid 839 | 
. . . . . . . . 9
⊢ (𝑦 = 𝐵 → (DECID 𝐶 = 𝑦 ↔ DECID 𝐶 = 𝐵)) | 
| 31 | 20, 30 | rspc2va 2882 | 
. . . . . . . 8
⊢ (((𝐶 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 DECID 𝑥 = 𝑦) → DECID 𝐶 = 𝐵) | 
| 32 | 2, 9, 10, 31 | syl21anc 1248 | 
. . . . . . 7
⊢ (𝜑 → DECID 𝐶 = 𝐵) | 
| 33 |   | elsng 3637 | 
. . . . . . . . 9
⊢ (𝐶 ∈ 𝐷 → (𝐶 ∈ {𝐵} ↔ 𝐶 = 𝐵)) | 
| 34 | 2, 33 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → (𝐶 ∈ {𝐵} ↔ 𝐶 = 𝐵)) | 
| 35 | 34 | dcbid 839 | 
. . . . . . 7
⊢ (𝜑 → (DECID
𝐶 ∈ {𝐵} ↔ DECID 𝐶 = 𝐵)) | 
| 36 | 32, 35 | mpbird 167 | 
. . . . . 6
⊢ (𝜑 → DECID 𝐶 ∈ {𝐵}) | 
| 37 | 28, 36 | dcun 3560 | 
. . . . 5
⊢ (𝜑 → DECID 𝐶 ∈ ({𝐴} ∪ {𝐵})) | 
| 38 |   | df-pr 3629 | 
. . . . . . 7
⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | 
| 39 | 38 | eleq2i 2263 | 
. . . . . 6
⊢ (𝐶 ∈ {𝐴, 𝐵} ↔ 𝐶 ∈ ({𝐴} ∪ {𝐵})) | 
| 40 | 39 | dcbii 841 | 
. . . . 5
⊢
(DECID 𝐶 ∈ {𝐴, 𝐵} ↔ DECID 𝐶 ∈ ({𝐴} ∪ {𝐵})) | 
| 41 | 37, 40 | sylibr 134 | 
. . . 4
⊢ (𝜑 → DECID 𝐶 ∈ {𝐴, 𝐵}) | 
| 42 |   | exmiddc 837 | 
. . . 4
⊢
(DECID 𝐶 ∈ {𝐴, 𝐵} → (𝐶 ∈ {𝐴, 𝐵} ∨ ¬ 𝐶 ∈ {𝐴, 𝐵})) | 
| 43 | 41, 42 | syl 14 | 
. . 3
⊢ (𝜑 → (𝐶 ∈ {𝐴, 𝐵} ∨ ¬ 𝐶 ∈ {𝐴, 𝐵})) | 
| 44 | 13, 18, 43 | mpjaodan 799 | 
. 2
⊢ (𝜑 → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin) | 
| 45 | 1, 44 | eqeltrid 2283 | 
1
⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |