Proof of Theorem subrginv
| Step | Hyp | Ref
| Expression |
| 1 | | subrgrcl 13782 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
| 2 | 1 | adantr 276 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → 𝑅 ∈ Ring) |
| 3 | | subrginv.1 |
. . . . . . . 8
⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| 4 | 3 | subrgbas 13786 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
| 5 | | eqid 2196 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 6 | 5 | subrgss 13778 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 7 | 4, 6 | eqsstrrd 3220 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅)) |
| 8 | 7 | adantr 276 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (Base‘𝑆) ⊆ (Base‘𝑅)) |
| 9 | 3 | subrgring 13780 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| 10 | | subrginv.3 |
. . . . . . 7
⊢ 𝑈 = (Unit‘𝑆) |
| 11 | | subrginv.4 |
. . . . . . 7
⊢ 𝐽 = (invr‘𝑆) |
| 12 | | eqid 2196 |
. . . . . . 7
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 13 | 10, 11, 12 | ringinvcl 13681 |
. . . . . 6
⊢ ((𝑆 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐽‘𝑋) ∈ (Base‘𝑆)) |
| 14 | 9, 13 | sylan 283 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (𝐽‘𝑋) ∈ (Base‘𝑆)) |
| 15 | 8, 14 | sseldd 3184 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (𝐽‘𝑋) ∈ (Base‘𝑅)) |
| 16 | | eqidd 2197 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (Base‘𝑆) = (Base‘𝑆)) |
| 17 | 10 | a1i 9 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → 𝑈 = (Unit‘𝑆)) |
| 18 | 9 | adantr 276 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → 𝑆 ∈ Ring) |
| 19 | | ringsrg 13603 |
. . . . . . 7
⊢ (𝑆 ∈ Ring → 𝑆 ∈ SRing) |
| 20 | 18, 19 | syl 14 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → 𝑆 ∈ SRing) |
| 21 | | simpr 110 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) |
| 22 | 16, 17, 20, 21 | unitcld 13664 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑆)) |
| 23 | 8, 22 | sseldd 3184 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑅)) |
| 24 | | eqid 2196 |
. . . . . . 7
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
| 25 | 3, 24, 10 | subrguss 13792 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑈 ⊆ (Unit‘𝑅)) |
| 26 | 25 | sselda 3183 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Unit‘𝑅)) |
| 27 | | subrginv.2 |
. . . . . 6
⊢ 𝐼 = (invr‘𝑅) |
| 28 | 24, 27, 5 | ringinvcl 13681 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝐼‘𝑋) ∈ (Base‘𝑅)) |
| 29 | 1, 26, 28 | syl2an2r 595 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ (Base‘𝑅)) |
| 30 | | eqid 2196 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 31 | 5, 30 | ringass 13572 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ ((𝐽‘𝑋) ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝐼‘𝑋) ∈ (Base‘𝑅))) → (((𝐽‘𝑋)(.r‘𝑅)𝑋)(.r‘𝑅)(𝐼‘𝑋)) = ((𝐽‘𝑋)(.r‘𝑅)(𝑋(.r‘𝑅)(𝐼‘𝑋)))) |
| 32 | 2, 15, 23, 29, 31 | syl13anc 1251 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (((𝐽‘𝑋)(.r‘𝑅)𝑋)(.r‘𝑅)(𝐼‘𝑋)) = ((𝐽‘𝑋)(.r‘𝑅)(𝑋(.r‘𝑅)(𝐼‘𝑋)))) |
| 33 | | eqid 2196 |
. . . . . . 7
⊢
(.r‘𝑆) = (.r‘𝑆) |
| 34 | | eqid 2196 |
. . . . . . 7
⊢
(1r‘𝑆) = (1r‘𝑆) |
| 35 | 10, 11, 33, 34 | unitlinv 13682 |
. . . . . 6
⊢ ((𝑆 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐽‘𝑋)(.r‘𝑆)𝑋) = (1r‘𝑆)) |
| 36 | 9, 35 | sylan 283 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → ((𝐽‘𝑋)(.r‘𝑆)𝑋) = (1r‘𝑆)) |
| 37 | 3, 30 | ressmulrg 12822 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) →
(.r‘𝑅) =
(.r‘𝑆)) |
| 38 | 1, 37 | mpdan 421 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(.r‘𝑅) =
(.r‘𝑆)) |
| 39 | 38 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (.r‘𝑅) = (.r‘𝑆)) |
| 40 | 39 | oveqd 5939 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → ((𝐽‘𝑋)(.r‘𝑅)𝑋) = ((𝐽‘𝑋)(.r‘𝑆)𝑋)) |
| 41 | | eqid 2196 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 42 | 3, 41 | subrg1 13787 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(1r‘𝑅) =
(1r‘𝑆)) |
| 43 | 42 | adantr 276 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (1r‘𝑅) = (1r‘𝑆)) |
| 44 | 36, 40, 43 | 3eqtr4d 2239 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → ((𝐽‘𝑋)(.r‘𝑅)𝑋) = (1r‘𝑅)) |
| 45 | 44 | oveq1d 5937 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (((𝐽‘𝑋)(.r‘𝑅)𝑋)(.r‘𝑅)(𝐼‘𝑋)) = ((1r‘𝑅)(.r‘𝑅)(𝐼‘𝑋))) |
| 46 | 24, 27, 30, 41 | unitrinv 13683 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (1r‘𝑅)) |
| 47 | 1, 26, 46 | syl2an2r 595 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (1r‘𝑅)) |
| 48 | 47 | oveq2d 5938 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → ((𝐽‘𝑋)(.r‘𝑅)(𝑋(.r‘𝑅)(𝐼‘𝑋))) = ((𝐽‘𝑋)(.r‘𝑅)(1r‘𝑅))) |
| 49 | 32, 45, 48 | 3eqtr3d 2237 |
. 2
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → ((1r‘𝑅)(.r‘𝑅)(𝐼‘𝑋)) = ((𝐽‘𝑋)(.r‘𝑅)(1r‘𝑅))) |
| 50 | 5, 30, 41 | ringlidm 13579 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝐼‘𝑋) ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑅)(𝐼‘𝑋)) = (𝐼‘𝑋)) |
| 51 | 1, 29, 50 | syl2an2r 595 |
. 2
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → ((1r‘𝑅)(.r‘𝑅)(𝐼‘𝑋)) = (𝐼‘𝑋)) |
| 52 | 5, 30, 41 | ringridm 13580 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝐽‘𝑋) ∈ (Base‘𝑅)) → ((𝐽‘𝑋)(.r‘𝑅)(1r‘𝑅)) = (𝐽‘𝑋)) |
| 53 | 1, 15, 52 | syl2an2r 595 |
. 2
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → ((𝐽‘𝑋)(.r‘𝑅)(1r‘𝑅)) = (𝐽‘𝑋)) |
| 54 | 49, 51, 53 | 3eqtr3d 2237 |
1
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) = (𝐽‘𝑋)) |