Proof of Theorem subrginv
Step | Hyp | Ref
| Expression |
1 | | subrgrcl 13358 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
2 | 1 | adantr 276 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → 𝑅 ∈ Ring) |
3 | | subrginv.1 |
. . . . . . . 8
⊢ 𝑆 = (𝑅 ↾s 𝐴) |
4 | 3 | subrgbas 13362 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
5 | | eqid 2177 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
6 | 5 | subrgss 13354 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
7 | 4, 6 | eqsstrrd 3194 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅)) |
8 | 7 | adantr 276 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (Base‘𝑆) ⊆ (Base‘𝑅)) |
9 | 3 | subrgring 13356 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
10 | | subrginv.3 |
. . . . . . 7
⊢ 𝑈 = (Unit‘𝑆) |
11 | | subrginv.4 |
. . . . . . 7
⊢ 𝐽 = (invr‘𝑆) |
12 | | eqid 2177 |
. . . . . . 7
⊢
(Base‘𝑆) =
(Base‘𝑆) |
13 | 10, 11, 12 | ringinvcl 13305 |
. . . . . 6
⊢ ((𝑆 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐽‘𝑋) ∈ (Base‘𝑆)) |
14 | 9, 13 | sylan 283 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (𝐽‘𝑋) ∈ (Base‘𝑆)) |
15 | 8, 14 | sseldd 3158 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (𝐽‘𝑋) ∈ (Base‘𝑅)) |
16 | | eqidd 2178 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (Base‘𝑆) = (Base‘𝑆)) |
17 | 10 | a1i 9 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → 𝑈 = (Unit‘𝑆)) |
18 | 9 | adantr 276 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → 𝑆 ∈ Ring) |
19 | | ringsrg 13235 |
. . . . . . 7
⊢ (𝑆 ∈ Ring → 𝑆 ∈ SRing) |
20 | 18, 19 | syl 14 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → 𝑆 ∈ SRing) |
21 | | simpr 110 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) |
22 | 16, 17, 20, 21 | unitcld 13288 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑆)) |
23 | 8, 22 | sseldd 3158 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑅)) |
24 | | eqid 2177 |
. . . . . . 7
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
25 | 3, 24, 10 | subrguss 13368 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑈 ⊆ (Unit‘𝑅)) |
26 | 25 | sselda 3157 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Unit‘𝑅)) |
27 | | subrginv.2 |
. . . . . 6
⊢ 𝐼 = (invr‘𝑅) |
28 | 24, 27, 5 | ringinvcl 13305 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝐼‘𝑋) ∈ (Base‘𝑅)) |
29 | 1, 26, 28 | syl2an2r 595 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ (Base‘𝑅)) |
30 | | eqid 2177 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
31 | 5, 30 | ringass 13210 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ ((𝐽‘𝑋) ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝐼‘𝑋) ∈ (Base‘𝑅))) → (((𝐽‘𝑋)(.r‘𝑅)𝑋)(.r‘𝑅)(𝐼‘𝑋)) = ((𝐽‘𝑋)(.r‘𝑅)(𝑋(.r‘𝑅)(𝐼‘𝑋)))) |
32 | 2, 15, 23, 29, 31 | syl13anc 1240 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (((𝐽‘𝑋)(.r‘𝑅)𝑋)(.r‘𝑅)(𝐼‘𝑋)) = ((𝐽‘𝑋)(.r‘𝑅)(𝑋(.r‘𝑅)(𝐼‘𝑋)))) |
33 | | eqid 2177 |
. . . . . . 7
⊢
(.r‘𝑆) = (.r‘𝑆) |
34 | | eqid 2177 |
. . . . . . 7
⊢
(1r‘𝑆) = (1r‘𝑆) |
35 | 10, 11, 33, 34 | unitlinv 13306 |
. . . . . 6
⊢ ((𝑆 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐽‘𝑋)(.r‘𝑆)𝑋) = (1r‘𝑆)) |
36 | 9, 35 | sylan 283 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → ((𝐽‘𝑋)(.r‘𝑆)𝑋) = (1r‘𝑆)) |
37 | 3, 30 | ressmulrg 12606 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) →
(.r‘𝑅) =
(.r‘𝑆)) |
38 | 1, 37 | mpdan 421 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(.r‘𝑅) =
(.r‘𝑆)) |
39 | 38 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (.r‘𝑅) = (.r‘𝑆)) |
40 | 39 | oveqd 5895 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → ((𝐽‘𝑋)(.r‘𝑅)𝑋) = ((𝐽‘𝑋)(.r‘𝑆)𝑋)) |
41 | | eqid 2177 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
42 | 3, 41 | subrg1 13363 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(1r‘𝑅) =
(1r‘𝑆)) |
43 | 42 | adantr 276 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (1r‘𝑅) = (1r‘𝑆)) |
44 | 36, 40, 43 | 3eqtr4d 2220 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → ((𝐽‘𝑋)(.r‘𝑅)𝑋) = (1r‘𝑅)) |
45 | 44 | oveq1d 5893 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (((𝐽‘𝑋)(.r‘𝑅)𝑋)(.r‘𝑅)(𝐼‘𝑋)) = ((1r‘𝑅)(.r‘𝑅)(𝐼‘𝑋))) |
46 | 24, 27, 30, 41 | unitrinv 13307 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (1r‘𝑅)) |
47 | 1, 26, 46 | syl2an2r 595 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (1r‘𝑅)) |
48 | 47 | oveq2d 5894 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → ((𝐽‘𝑋)(.r‘𝑅)(𝑋(.r‘𝑅)(𝐼‘𝑋))) = ((𝐽‘𝑋)(.r‘𝑅)(1r‘𝑅))) |
49 | 32, 45, 48 | 3eqtr3d 2218 |
. 2
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → ((1r‘𝑅)(.r‘𝑅)(𝐼‘𝑋)) = ((𝐽‘𝑋)(.r‘𝑅)(1r‘𝑅))) |
50 | 5, 30, 41 | ringlidm 13217 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝐼‘𝑋) ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑅)(𝐼‘𝑋)) = (𝐼‘𝑋)) |
51 | 1, 29, 50 | syl2an2r 595 |
. 2
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → ((1r‘𝑅)(.r‘𝑅)(𝐼‘𝑋)) = (𝐼‘𝑋)) |
52 | 5, 30, 41 | ringridm 13218 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝐽‘𝑋) ∈ (Base‘𝑅)) → ((𝐽‘𝑋)(.r‘𝑅)(1r‘𝑅)) = (𝐽‘𝑋)) |
53 | 1, 15, 52 | syl2an2r 595 |
. 2
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → ((𝐽‘𝑋)(.r‘𝑅)(1r‘𝑅)) = (𝐽‘𝑋)) |
54 | 49, 51, 53 | 3eqtr3d 2218 |
1
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) = (𝐽‘𝑋)) |