ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrginv GIF version

Theorem subrginv 14209
Description: A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrginv.1 𝑆 = (𝑅s 𝐴)
subrginv.2 𝐼 = (invr𝑅)
subrginv.3 𝑈 = (Unit‘𝑆)
subrginv.4 𝐽 = (invr𝑆)
Assertion
Ref Expression
subrginv ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝐼𝑋) = (𝐽𝑋))

Proof of Theorem subrginv
StepHypRef Expression
1 subrgrcl 14198 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
21adantr 276 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑅 ∈ Ring)
3 subrginv.1 . . . . . . . 8 𝑆 = (𝑅s 𝐴)
43subrgbas 14202 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
5 eqid 2229 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
65subrgss 14194 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
74, 6eqsstrrd 3261 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
87adantr 276 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (Base‘𝑆) ⊆ (Base‘𝑅))
93subrgring 14196 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
10 subrginv.3 . . . . . . 7 𝑈 = (Unit‘𝑆)
11 subrginv.4 . . . . . . 7 𝐽 = (invr𝑆)
12 eqid 2229 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
1310, 11, 12ringinvcl 14097 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑋𝑈) → (𝐽𝑋) ∈ (Base‘𝑆))
149, 13sylan 283 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝐽𝑋) ∈ (Base‘𝑆))
158, 14sseldd 3225 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝐽𝑋) ∈ (Base‘𝑅))
16 eqidd 2230 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (Base‘𝑆) = (Base‘𝑆))
1710a1i 9 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑈 = (Unit‘𝑆))
189adantr 276 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑆 ∈ Ring)
19 ringsrg 14018 . . . . . . 7 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
2018, 19syl 14 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑆 ∈ SRing)
21 simpr 110 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑋𝑈)
2216, 17, 20, 21unitcld 14080 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑋 ∈ (Base‘𝑆))
238, 22sseldd 3225 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑋 ∈ (Base‘𝑅))
24 eqid 2229 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
253, 24, 10subrguss 14208 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 ⊆ (Unit‘𝑅))
2625sselda 3224 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑋 ∈ (Unit‘𝑅))
27 subrginv.2 . . . . . 6 𝐼 = (invr𝑅)
2824, 27, 5ringinvcl 14097 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝐼𝑋) ∈ (Base‘𝑅))
291, 26, 28syl2an2r 597 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝐼𝑋) ∈ (Base‘𝑅))
30 eqid 2229 . . . . 5 (.r𝑅) = (.r𝑅)
315, 30ringass 13987 . . . 4 ((𝑅 ∈ Ring ∧ ((𝐽𝑋) ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝐼𝑋) ∈ (Base‘𝑅))) → (((𝐽𝑋)(.r𝑅)𝑋)(.r𝑅)(𝐼𝑋)) = ((𝐽𝑋)(.r𝑅)(𝑋(.r𝑅)(𝐼𝑋))))
322, 15, 23, 29, 31syl13anc 1273 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (((𝐽𝑋)(.r𝑅)𝑋)(.r𝑅)(𝐼𝑋)) = ((𝐽𝑋)(.r𝑅)(𝑋(.r𝑅)(𝐼𝑋))))
33 eqid 2229 . . . . . . 7 (.r𝑆) = (.r𝑆)
34 eqid 2229 . . . . . . 7 (1r𝑆) = (1r𝑆)
3510, 11, 33, 34unitlinv 14098 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑆)𝑋) = (1r𝑆))
369, 35sylan 283 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑆)𝑋) = (1r𝑆))
373, 30ressmulrg 13186 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
381, 37mpdan 421 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
3938adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (.r𝑅) = (.r𝑆))
4039oveqd 6024 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑅)𝑋) = ((𝐽𝑋)(.r𝑆)𝑋))
41 eqid 2229 . . . . . . 7 (1r𝑅) = (1r𝑅)
423, 41subrg1 14203 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
4342adantr 276 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (1r𝑅) = (1r𝑆))
4436, 40, 433eqtr4d 2272 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑅)𝑋) = (1r𝑅))
4544oveq1d 6022 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (((𝐽𝑋)(.r𝑅)𝑋)(.r𝑅)(𝐼𝑋)) = ((1r𝑅)(.r𝑅)(𝐼𝑋)))
4624, 27, 30, 41unitrinv 14099 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
471, 26, 46syl2an2r 597 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
4847oveq2d 6023 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑅)(𝑋(.r𝑅)(𝐼𝑋))) = ((𝐽𝑋)(.r𝑅)(1r𝑅)))
4932, 45, 483eqtr3d 2270 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((1r𝑅)(.r𝑅)(𝐼𝑋)) = ((𝐽𝑋)(.r𝑅)(1r𝑅)))
505, 30, 41ringlidm 13994 . . 3 ((𝑅 ∈ Ring ∧ (𝐼𝑋) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)(𝐼𝑋)) = (𝐼𝑋))
511, 29, 50syl2an2r 597 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((1r𝑅)(.r𝑅)(𝐼𝑋)) = (𝐼𝑋))
525, 30, 41ringridm 13995 . . 3 ((𝑅 ∈ Ring ∧ (𝐽𝑋) ∈ (Base‘𝑅)) → ((𝐽𝑋)(.r𝑅)(1r𝑅)) = (𝐽𝑋))
531, 15, 52syl2an2r 597 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑅)(1r𝑅)) = (𝐽𝑋))
5449, 51, 533eqtr3d 2270 1 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝐼𝑋) = (𝐽𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wss 3197  cfv 5318  (class class class)co 6007  Basecbs 13040  s cress 13041  .rcmulr 13119  1rcur 13930  SRingcsrg 13934  Ringcrg 13967  Unitcui 14058  invrcinvr 14092  SubRingcsubrg 14189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-tpos 6397  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-subg 13715  df-cmn 13831  df-abl 13832  df-mgp 13892  df-ur 13931  df-srg 13935  df-ring 13969  df-oppr 14039  df-dvdsr 14060  df-unit 14061  df-invr 14093  df-subrg 14191
This theorem is referenced by:  subrgdv  14210  subrgunit  14211  subrgugrp  14212
  Copyright terms: Public domain W3C validator