ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrginv GIF version

Theorem subrginv 13736
Description: A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrginv.1 𝑆 = (𝑅s 𝐴)
subrginv.2 𝐼 = (invr𝑅)
subrginv.3 𝑈 = (Unit‘𝑆)
subrginv.4 𝐽 = (invr𝑆)
Assertion
Ref Expression
subrginv ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝐼𝑋) = (𝐽𝑋))

Proof of Theorem subrginv
StepHypRef Expression
1 subrgrcl 13725 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
21adantr 276 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑅 ∈ Ring)
3 subrginv.1 . . . . . . . 8 𝑆 = (𝑅s 𝐴)
43subrgbas 13729 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
5 eqid 2193 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
65subrgss 13721 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
74, 6eqsstrrd 3217 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
87adantr 276 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (Base‘𝑆) ⊆ (Base‘𝑅))
93subrgring 13723 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
10 subrginv.3 . . . . . . 7 𝑈 = (Unit‘𝑆)
11 subrginv.4 . . . . . . 7 𝐽 = (invr𝑆)
12 eqid 2193 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
1310, 11, 12ringinvcl 13624 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑋𝑈) → (𝐽𝑋) ∈ (Base‘𝑆))
149, 13sylan 283 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝐽𝑋) ∈ (Base‘𝑆))
158, 14sseldd 3181 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝐽𝑋) ∈ (Base‘𝑅))
16 eqidd 2194 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (Base‘𝑆) = (Base‘𝑆))
1710a1i 9 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑈 = (Unit‘𝑆))
189adantr 276 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑆 ∈ Ring)
19 ringsrg 13546 . . . . . . 7 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
2018, 19syl 14 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑆 ∈ SRing)
21 simpr 110 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑋𝑈)
2216, 17, 20, 21unitcld 13607 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑋 ∈ (Base‘𝑆))
238, 22sseldd 3181 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑋 ∈ (Base‘𝑅))
24 eqid 2193 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
253, 24, 10subrguss 13735 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 ⊆ (Unit‘𝑅))
2625sselda 3180 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑋 ∈ (Unit‘𝑅))
27 subrginv.2 . . . . . 6 𝐼 = (invr𝑅)
2824, 27, 5ringinvcl 13624 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝐼𝑋) ∈ (Base‘𝑅))
291, 26, 28syl2an2r 595 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝐼𝑋) ∈ (Base‘𝑅))
30 eqid 2193 . . . . 5 (.r𝑅) = (.r𝑅)
315, 30ringass 13515 . . . 4 ((𝑅 ∈ Ring ∧ ((𝐽𝑋) ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝐼𝑋) ∈ (Base‘𝑅))) → (((𝐽𝑋)(.r𝑅)𝑋)(.r𝑅)(𝐼𝑋)) = ((𝐽𝑋)(.r𝑅)(𝑋(.r𝑅)(𝐼𝑋))))
322, 15, 23, 29, 31syl13anc 1251 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (((𝐽𝑋)(.r𝑅)𝑋)(.r𝑅)(𝐼𝑋)) = ((𝐽𝑋)(.r𝑅)(𝑋(.r𝑅)(𝐼𝑋))))
33 eqid 2193 . . . . . . 7 (.r𝑆) = (.r𝑆)
34 eqid 2193 . . . . . . 7 (1r𝑆) = (1r𝑆)
3510, 11, 33, 34unitlinv 13625 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑆)𝑋) = (1r𝑆))
369, 35sylan 283 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑆)𝑋) = (1r𝑆))
373, 30ressmulrg 12765 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
381, 37mpdan 421 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
3938adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (.r𝑅) = (.r𝑆))
4039oveqd 5936 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑅)𝑋) = ((𝐽𝑋)(.r𝑆)𝑋))
41 eqid 2193 . . . . . . 7 (1r𝑅) = (1r𝑅)
423, 41subrg1 13730 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
4342adantr 276 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (1r𝑅) = (1r𝑆))
4436, 40, 433eqtr4d 2236 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑅)𝑋) = (1r𝑅))
4544oveq1d 5934 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (((𝐽𝑋)(.r𝑅)𝑋)(.r𝑅)(𝐼𝑋)) = ((1r𝑅)(.r𝑅)(𝐼𝑋)))
4624, 27, 30, 41unitrinv 13626 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
471, 26, 46syl2an2r 595 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
4847oveq2d 5935 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑅)(𝑋(.r𝑅)(𝐼𝑋))) = ((𝐽𝑋)(.r𝑅)(1r𝑅)))
4932, 45, 483eqtr3d 2234 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((1r𝑅)(.r𝑅)(𝐼𝑋)) = ((𝐽𝑋)(.r𝑅)(1r𝑅)))
505, 30, 41ringlidm 13522 . . 3 ((𝑅 ∈ Ring ∧ (𝐼𝑋) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)(𝐼𝑋)) = (𝐼𝑋))
511, 29, 50syl2an2r 595 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((1r𝑅)(.r𝑅)(𝐼𝑋)) = (𝐼𝑋))
525, 30, 41ringridm 13523 . . 3 ((𝑅 ∈ Ring ∧ (𝐽𝑋) ∈ (Base‘𝑅)) → ((𝐽𝑋)(.r𝑅)(1r𝑅)) = (𝐽𝑋))
531, 15, 52syl2an2r 595 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑅)(1r𝑅)) = (𝐽𝑋))
5449, 51, 533eqtr3d 2234 1 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝐼𝑋) = (𝐽𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wss 3154  cfv 5255  (class class class)co 5919  Basecbs 12621  s cress 12622  .rcmulr 12699  1rcur 13458  SRingcsrg 13462  Ringcrg 13495  Unitcui 13586  invrcinvr 13619  SubRingcsubrg 13716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-tpos 6300  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-subg 13243  df-cmn 13359  df-abl 13360  df-mgp 13420  df-ur 13459  df-srg 13463  df-ring 13497  df-oppr 13567  df-dvdsr 13588  df-unit 13589  df-invr 13620  df-subrg 13718
This theorem is referenced by:  subrgdv  13737  subrgunit  13738  subrgugrp  13739
  Copyright terms: Public domain W3C validator