ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrginv GIF version

Theorem subrginv 14166
Description: A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrginv.1 𝑆 = (𝑅s 𝐴)
subrginv.2 𝐼 = (invr𝑅)
subrginv.3 𝑈 = (Unit‘𝑆)
subrginv.4 𝐽 = (invr𝑆)
Assertion
Ref Expression
subrginv ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝐼𝑋) = (𝐽𝑋))

Proof of Theorem subrginv
StepHypRef Expression
1 subrgrcl 14155 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
21adantr 276 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑅 ∈ Ring)
3 subrginv.1 . . . . . . . 8 𝑆 = (𝑅s 𝐴)
43subrgbas 14159 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
5 eqid 2209 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
65subrgss 14151 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
74, 6eqsstrrd 3241 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
87adantr 276 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (Base‘𝑆) ⊆ (Base‘𝑅))
93subrgring 14153 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
10 subrginv.3 . . . . . . 7 𝑈 = (Unit‘𝑆)
11 subrginv.4 . . . . . . 7 𝐽 = (invr𝑆)
12 eqid 2209 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
1310, 11, 12ringinvcl 14054 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑋𝑈) → (𝐽𝑋) ∈ (Base‘𝑆))
149, 13sylan 283 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝐽𝑋) ∈ (Base‘𝑆))
158, 14sseldd 3205 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝐽𝑋) ∈ (Base‘𝑅))
16 eqidd 2210 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (Base‘𝑆) = (Base‘𝑆))
1710a1i 9 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑈 = (Unit‘𝑆))
189adantr 276 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑆 ∈ Ring)
19 ringsrg 13976 . . . . . . 7 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
2018, 19syl 14 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑆 ∈ SRing)
21 simpr 110 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑋𝑈)
2216, 17, 20, 21unitcld 14037 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑋 ∈ (Base‘𝑆))
238, 22sseldd 3205 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑋 ∈ (Base‘𝑅))
24 eqid 2209 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
253, 24, 10subrguss 14165 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 ⊆ (Unit‘𝑅))
2625sselda 3204 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → 𝑋 ∈ (Unit‘𝑅))
27 subrginv.2 . . . . . 6 𝐼 = (invr𝑅)
2824, 27, 5ringinvcl 14054 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝐼𝑋) ∈ (Base‘𝑅))
291, 26, 28syl2an2r 597 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝐼𝑋) ∈ (Base‘𝑅))
30 eqid 2209 . . . . 5 (.r𝑅) = (.r𝑅)
315, 30ringass 13945 . . . 4 ((𝑅 ∈ Ring ∧ ((𝐽𝑋) ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝐼𝑋) ∈ (Base‘𝑅))) → (((𝐽𝑋)(.r𝑅)𝑋)(.r𝑅)(𝐼𝑋)) = ((𝐽𝑋)(.r𝑅)(𝑋(.r𝑅)(𝐼𝑋))))
322, 15, 23, 29, 31syl13anc 1254 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (((𝐽𝑋)(.r𝑅)𝑋)(.r𝑅)(𝐼𝑋)) = ((𝐽𝑋)(.r𝑅)(𝑋(.r𝑅)(𝐼𝑋))))
33 eqid 2209 . . . . . . 7 (.r𝑆) = (.r𝑆)
34 eqid 2209 . . . . . . 7 (1r𝑆) = (1r𝑆)
3510, 11, 33, 34unitlinv 14055 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑆)𝑋) = (1r𝑆))
369, 35sylan 283 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑆)𝑋) = (1r𝑆))
373, 30ressmulrg 13144 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
381, 37mpdan 421 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
3938adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (.r𝑅) = (.r𝑆))
4039oveqd 5991 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑅)𝑋) = ((𝐽𝑋)(.r𝑆)𝑋))
41 eqid 2209 . . . . . . 7 (1r𝑅) = (1r𝑅)
423, 41subrg1 14160 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
4342adantr 276 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (1r𝑅) = (1r𝑆))
4436, 40, 433eqtr4d 2252 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑅)𝑋) = (1r𝑅))
4544oveq1d 5989 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (((𝐽𝑋)(.r𝑅)𝑋)(.r𝑅)(𝐼𝑋)) = ((1r𝑅)(.r𝑅)(𝐼𝑋)))
4624, 27, 30, 41unitrinv 14056 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
471, 26, 46syl2an2r 597 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
4847oveq2d 5990 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑅)(𝑋(.r𝑅)(𝐼𝑋))) = ((𝐽𝑋)(.r𝑅)(1r𝑅)))
4932, 45, 483eqtr3d 2250 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((1r𝑅)(.r𝑅)(𝐼𝑋)) = ((𝐽𝑋)(.r𝑅)(1r𝑅)))
505, 30, 41ringlidm 13952 . . 3 ((𝑅 ∈ Ring ∧ (𝐼𝑋) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)(𝐼𝑋)) = (𝐼𝑋))
511, 29, 50syl2an2r 597 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((1r𝑅)(.r𝑅)(𝐼𝑋)) = (𝐼𝑋))
525, 30, 41ringridm 13953 . . 3 ((𝑅 ∈ Ring ∧ (𝐽𝑋) ∈ (Base‘𝑅)) → ((𝐽𝑋)(.r𝑅)(1r𝑅)) = (𝐽𝑋))
531, 15, 52syl2an2r 597 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → ((𝐽𝑋)(.r𝑅)(1r𝑅)) = (𝐽𝑋))
5449, 51, 533eqtr3d 2250 1 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝐼𝑋) = (𝐽𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wss 3177  cfv 5294  (class class class)co 5974  Basecbs 12998  s cress 12999  .rcmulr 13077  1rcur 13888  SRingcsrg 13892  Ringcrg 13925  Unitcui 14016  invrcinvr 14049  SubRingcsubrg 14146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-tpos 6361  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-subg 13673  df-cmn 13789  df-abl 13790  df-mgp 13850  df-ur 13889  df-srg 13893  df-ring 13927  df-oppr 13997  df-dvdsr 14018  df-unit 14019  df-invr 14050  df-subrg 14148
This theorem is referenced by:  subrgdv  14167  subrgunit  14168  subrgugrp  14169
  Copyright terms: Public domain W3C validator