ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islss3 GIF version

Theorem islss3 13695
Description: A linear subspace of a module is a subset which is a module in its own right. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
islss3.x 𝑋 = (𝑊s 𝑈)
islss3.v 𝑉 = (Base‘𝑊)
islss3.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
islss3 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈𝑉𝑋 ∈ LMod)))

Proof of Theorem islss3
Dummy variables 𝑎 𝑏 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islss3.v . . . 4 𝑉 = (Base‘𝑊)
2 islss3.s . . . 4 𝑆 = (LSubSp‘𝑊)
31, 2lssssg 13676 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈𝑉)
4 islss3.x . . . . . . 7 𝑋 = (𝑊s 𝑈)
54a1i 9 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑋 = (𝑊s 𝑈))
61a1i 9 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑉 = (Base‘𝑊))
7 simpl 109 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑊 ∈ LMod)
8 simpr 110 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈𝑉)
95, 6, 7, 8ressbas2d 12580 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 = (Base‘𝑋))
103, 9syldan 282 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
114a1i 9 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 = (𝑊s 𝑈))
12 eqidd 2190 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (+g𝑊) = (+g𝑊))
13 simpr 110 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈𝑆)
14 simpl 109 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑊 ∈ LMod)
1511, 12, 13, 14ressplusgd 12640 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (+g𝑊) = (+g𝑋))
16 eqid 2189 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
174, 16ressscag 12694 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (Scalar‘𝑊) = (Scalar‘𝑋))
18 eqid 2189 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
194, 18ressvscag 12695 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ( ·𝑠𝑊) = ( ·𝑠𝑋))
20 eqidd 2190 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
21 eqidd 2190 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)))
22 eqidd 2190 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)))
23 eqidd 2190 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)))
2416lmodring 13611 . . . . 5 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
2524adantr 276 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ Ring)
262lsssubg 13693 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
274subggrp 13116 . . . . 5 (𝑈 ∈ (SubGrp‘𝑊) → 𝑋 ∈ Grp)
2826, 27syl 14 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ Grp)
29 eqid 2189 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3016, 18, 29, 2lssvscl 13691 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈)) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑈)
31303impb 1201 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑈)
32 simpll 527 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑊 ∈ LMod)
33 simpr1 1005 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
343adantr 276 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑈𝑉)
35 simpr2 1006 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎𝑈)
3634, 35sseldd 3171 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎𝑉)
37 simpr3 1007 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏𝑈)
3834, 37sseldd 3171 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏𝑉)
39 eqid 2189 . . . . . 6 (+g𝑊) = (+g𝑊)
401, 39, 16, 18, 29lmodvsdi 13627 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → (𝑥( ·𝑠𝑊)(𝑎(+g𝑊)𝑏)) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)(𝑥( ·𝑠𝑊)𝑏)))
4132, 33, 36, 38, 40syl13anc 1251 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑥( ·𝑠𝑊)(𝑎(+g𝑊)𝑏)) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)(𝑥( ·𝑠𝑊)𝑏)))
42 simpll 527 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑊 ∈ LMod)
43 simpr1 1005 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
44 simpr2 1006 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
453adantr 276 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑈𝑉)
46 simpr3 1007 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑏𝑈)
4745, 46sseldd 3171 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑏𝑉)
48 eqid 2189 . . . . . 6 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
491, 39, 16, 18, 29, 48lmodvsdir 13628 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑉)) → ((𝑥(+g‘(Scalar‘𝑊))𝑎)( ·𝑠𝑊)𝑏) = ((𝑥( ·𝑠𝑊)𝑏)(+g𝑊)(𝑎( ·𝑠𝑊)𝑏)))
5042, 43, 44, 47, 49syl13anc 1251 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → ((𝑥(+g‘(Scalar‘𝑊))𝑎)( ·𝑠𝑊)𝑏) = ((𝑥( ·𝑠𝑊)𝑏)(+g𝑊)(𝑎( ·𝑠𝑊)𝑏)))
51 eqid 2189 . . . . . 6 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
521, 16, 18, 29, 51lmodvsass 13629 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑉)) → ((𝑥(.r‘(Scalar‘𝑊))𝑎)( ·𝑠𝑊)𝑏) = (𝑥( ·𝑠𝑊)(𝑎( ·𝑠𝑊)𝑏)))
5342, 43, 44, 47, 52syl13anc 1251 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → ((𝑥(.r‘(Scalar‘𝑊))𝑎)( ·𝑠𝑊)𝑏) = (𝑥( ·𝑠𝑊)(𝑎( ·𝑠𝑊)𝑏)))
543sselda 3170 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) → 𝑥𝑉)
55 eqid 2189 . . . . . . 7 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
561, 16, 18, 55lmodvs1 13632 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑥𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑥) = 𝑥)
5756adantlr 477 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑥) = 𝑥)
5854, 57syldan 282 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑥) = 𝑥)
5910, 15, 17, 19, 20, 21, 22, 23, 25, 28, 31, 41, 50, 53, 58islmodd 13609 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
603, 59jca 306 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈𝑉𝑋 ∈ LMod))
61 simprl 529 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑈𝑉)
6261, 9syldan 282 . . 3 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑈 = (Base‘𝑋))
63 basfn 12570 . . . . . . . 8 Base Fn V
64 simprr 531 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑋 ∈ LMod)
6564elexd 2765 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑋 ∈ V)
66 funfvex 5551 . . . . . . . . 9 ((Fun Base ∧ 𝑋 ∈ dom Base) → (Base‘𝑋) ∈ V)
6766funfni 5335 . . . . . . . 8 ((Base Fn V ∧ 𝑋 ∈ V) → (Base‘𝑋) ∈ V)
6863, 65, 67sylancr 414 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘𝑋) ∈ V)
6962, 68eqeltrd 2266 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑈 ∈ V)
704, 16ressscag 12694 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈 ∈ V) → (Scalar‘𝑊) = (Scalar‘𝑋))
7169, 70syldan 282 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Scalar‘𝑊) = (Scalar‘𝑋))
7271eqcomd 2195 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Scalar‘𝑋) = (Scalar‘𝑊))
73 eqidd 2190 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋)))
741a1i 9 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑉 = (Base‘𝑊))
754a1i 9 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑋 = (𝑊s 𝑈))
76 eqidd 2190 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (+g𝑊) = (+g𝑊))
77 simpl 109 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑊 ∈ LMod)
7875, 76, 69, 77ressplusgd 12640 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (+g𝑊) = (+g𝑋))
7978eqcomd 2195 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (+g𝑋) = (+g𝑊))
804, 18ressvscag 12695 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈 ∈ V) → ( ·𝑠𝑊) = ( ·𝑠𝑋))
8169, 80syldan 282 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → ( ·𝑠𝑊) = ( ·𝑠𝑋))
8281eqcomd 2195 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → ( ·𝑠𝑋) = ( ·𝑠𝑊))
832a1i 9 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑆 = (LSubSp‘𝑊))
8462, 61eqsstrrd 3207 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘𝑋) ⊆ 𝑉)
85 lmodgrp 13610 . . . . . 6 (𝑋 ∈ LMod → 𝑋 ∈ Grp)
8685ad2antll 491 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑋 ∈ Grp)
87 eqid 2189 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
88 eqid 2189 . . . . . 6 (0g𝑋) = (0g𝑋)
8987, 88grpidcl 12973 . . . . 5 (𝑋 ∈ Grp → (0g𝑋) ∈ (Base‘𝑋))
90 elex2 2768 . . . . 5 ((0g𝑋) ∈ (Base‘𝑋) → ∃𝑗 𝑗 ∈ (Base‘𝑋))
9186, 89, 903syl 17 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → ∃𝑗 𝑗 ∈ (Base‘𝑋))
9264adantr 276 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) → 𝑋 ∈ LMod)
93 eqid 2189 . . . . . . 7 (LSubSp‘𝑋) = (LSubSp‘𝑋)
9487, 93lss1 13678 . . . . . 6 (𝑋 ∈ LMod → (Base‘𝑋) ∈ (LSubSp‘𝑋))
9592, 94syl 14 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) → (Base‘𝑋) ∈ (LSubSp‘𝑋))
96 simpr 110 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) → (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋)))
97 eqid 2189 . . . . . 6 (Scalar‘𝑋) = (Scalar‘𝑋)
98 eqid 2189 . . . . . 6 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
99 eqid 2189 . . . . . 6 (+g𝑋) = (+g𝑋)
100 eqid 2189 . . . . . 6 ( ·𝑠𝑋) = ( ·𝑠𝑋)
10197, 98, 99, 100, 93lssclg 13680 . . . . 5 ((𝑋 ∈ LMod ∧ (Base‘𝑋) ∈ (LSubSp‘𝑋) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) → ((𝑥( ·𝑠𝑋)𝑎)(+g𝑋)𝑏) ∈ (Base‘𝑋))
10292, 95, 96, 101syl3anc 1249 . . . 4 (((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) → ((𝑥( ·𝑠𝑋)𝑎)(+g𝑋)𝑏) ∈ (Base‘𝑋))
10372, 73, 74, 79, 82, 83, 84, 91, 102, 77islssmd 13675 . . 3 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘𝑋) ∈ 𝑆)
10462, 103eqeltrd 2266 . 2 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑈𝑆)
10560, 104impbida 596 1 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈𝑉𝑋 ∈ LMod)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1503  wcel 2160  Vcvv 2752  wss 3144   Fn wfn 5230  cfv 5235  (class class class)co 5896  Basecbs 12512  s cress 12513  +gcplusg 12589  .rcmulr 12590  Scalarcsca 12592   ·𝑠 cvsca 12593  0gc0g 12761  Grpcgrp 12945  SubGrpcsubg 13106  1rcur 13313  Ringcrg 13350  LModclmod 13603  LSubSpclss 13668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-pre-ltirr 7953  ax-pre-lttrn 7955  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-pnf 8024  df-mnf 8025  df-ltxr 8027  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-5 9011  df-6 9012  df-ndx 12515  df-slot 12516  df-base 12518  df-sets 12519  df-iress 12520  df-plusg 12602  df-mulr 12603  df-sca 12605  df-vsca 12606  df-0g 12763  df-mgm 12832  df-sgrp 12865  df-mnd 12878  df-grp 12948  df-minusg 12949  df-sbg 12950  df-subg 13109  df-mgp 13275  df-ur 13314  df-ring 13352  df-lmod 13605  df-lssm 13669
This theorem is referenced by:  lsslmod  13696  lsslss  13697
  Copyright terms: Public domain W3C validator