Step | Hyp | Ref
| Expression |
1 | | islss3.v |
. . . 4
β’ π = (Baseβπ) |
2 | | islss3.s |
. . . 4
β’ π = (LSubSpβπ) |
3 | 1, 2 | lssssg 13452 |
. . 3
β’ ((π β LMod β§ π β π) β π β π) |
4 | | islss3.x |
. . . . . . 7
β’ π = (π βΎs π) |
5 | 4 | a1i 9 |
. . . . . 6
β’ ((π β LMod β§ π β π) β π = (π βΎs π)) |
6 | 1 | a1i 9 |
. . . . . 6
β’ ((π β LMod β§ π β π) β π = (Baseβπ)) |
7 | | simpl 109 |
. . . . . 6
β’ ((π β LMod β§ π β π) β π β LMod) |
8 | | simpr 110 |
. . . . . 6
β’ ((π β LMod β§ π β π) β π β π) |
9 | 5, 6, 7, 8 | ressbas2d 12530 |
. . . . 5
β’ ((π β LMod β§ π β π) β π = (Baseβπ)) |
10 | 3, 9 | syldan 282 |
. . . 4
β’ ((π β LMod β§ π β π) β π = (Baseβπ)) |
11 | 4 | a1i 9 |
. . . . 5
β’ ((π β LMod β§ π β π) β π = (π βΎs π)) |
12 | | eqidd 2178 |
. . . . 5
β’ ((π β LMod β§ π β π) β (+gβπ) = (+gβπ)) |
13 | | simpr 110 |
. . . . 5
β’ ((π β LMod β§ π β π) β π β π) |
14 | | simpl 109 |
. . . . 5
β’ ((π β LMod β§ π β π) β π β LMod) |
15 | 11, 12, 13, 14 | ressplusgd 12589 |
. . . 4
β’ ((π β LMod β§ π β π) β (+gβπ) = (+gβπ)) |
16 | | eqid 2177 |
. . . . 5
β’
(Scalarβπ) =
(Scalarβπ) |
17 | 4, 16 | ressscag 12643 |
. . . 4
β’ ((π β LMod β§ π β π) β (Scalarβπ) = (Scalarβπ)) |
18 | | eqid 2177 |
. . . . 5
β’ (
Β·π βπ) = ( Β·π
βπ) |
19 | 4, 18 | ressvscag 12644 |
. . . 4
β’ ((π β LMod β§ π β π) β (
Β·π βπ) = ( Β·π
βπ)) |
20 | | eqidd 2178 |
. . . 4
β’ ((π β LMod β§ π β π) β (Baseβ(Scalarβπ)) =
(Baseβ(Scalarβπ))) |
21 | | eqidd 2178 |
. . . 4
β’ ((π β LMod β§ π β π) β
(+gβ(Scalarβπ)) =
(+gβ(Scalarβπ))) |
22 | | eqidd 2178 |
. . . 4
β’ ((π β LMod β§ π β π) β
(.rβ(Scalarβπ)) =
(.rβ(Scalarβπ))) |
23 | | eqidd 2178 |
. . . 4
β’ ((π β LMod β§ π β π) β
(1rβ(Scalarβπ)) =
(1rβ(Scalarβπ))) |
24 | 16 | lmodring 13390 |
. . . . 5
β’ (π β LMod β
(Scalarβπ) β
Ring) |
25 | 24 | adantr 276 |
. . . 4
β’ ((π β LMod β§ π β π) β (Scalarβπ) β Ring) |
26 | 2 | lsssubg 13469 |
. . . . 5
β’ ((π β LMod β§ π β π) β π β (SubGrpβπ)) |
27 | 4 | subggrp 13042 |
. . . . 5
β’ (π β (SubGrpβπ) β π β Grp) |
28 | 26, 27 | syl 14 |
. . . 4
β’ ((π β LMod β§ π β π) β π β Grp) |
29 | | eqid 2177 |
. . . . . 6
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
30 | 16, 18, 29, 2 | lssvscl 13467 |
. . . . 5
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β π)) β (π₯( Β·π
βπ)π) β π) |
31 | 30 | 3impb 1199 |
. . . 4
β’ (((π β LMod β§ π β π) β§ π₯ β (Baseβ(Scalarβπ)) β§ π β π) β (π₯( Β·π
βπ)π) β π) |
32 | | simpll 527 |
. . . . 5
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π β LMod) |
33 | | simpr1 1003 |
. . . . 5
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π₯ β (Baseβ(Scalarβπ))) |
34 | 3 | adantr 276 |
. . . . . 6
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π β π) |
35 | | simpr2 1004 |
. . . . . 6
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π β π) |
36 | 34, 35 | sseldd 3158 |
. . . . 5
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π β π) |
37 | | simpr3 1005 |
. . . . . 6
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π β π) |
38 | 34, 37 | sseldd 3158 |
. . . . 5
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π β π) |
39 | | eqid 2177 |
. . . . . 6
β’
(+gβπ) = (+gβπ) |
40 | 1, 39, 16, 18, 29 | lmodvsdi 13406 |
. . . . 5
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (π₯( Β·π
βπ)(π(+gβπ)π)) = ((π₯( Β·π
βπ)π)(+gβπ)(π₯( Β·π
βπ)π))) |
41 | 32, 33, 36, 38, 40 | syl13anc 1240 |
. . . 4
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (π₯( Β·π
βπ)(π(+gβπ)π)) = ((π₯( Β·π
βπ)π)(+gβπ)(π₯( Β·π
βπ)π))) |
42 | | simpll 527 |
. . . . 5
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ)) β§ π β π)) β π β LMod) |
43 | | simpr1 1003 |
. . . . 5
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ)) β§ π β π)) β π₯ β (Baseβ(Scalarβπ))) |
44 | | simpr2 1004 |
. . . . 5
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ)) β§ π β π)) β π β (Baseβ(Scalarβπ))) |
45 | 3 | adantr 276 |
. . . . . 6
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ)) β§ π β π)) β π β π) |
46 | | simpr3 1005 |
. . . . . 6
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ)) β§ π β π)) β π β π) |
47 | 45, 46 | sseldd 3158 |
. . . . 5
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ)) β§ π β π)) β π β π) |
48 | | eqid 2177 |
. . . . . 6
β’
(+gβ(Scalarβπ)) =
(+gβ(Scalarβπ)) |
49 | 1, 39, 16, 18, 29, 48 | lmodvsdir 13407 |
. . . . 5
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ)) β§ π β π)) β ((π₯(+gβ(Scalarβπ))π)( Β·π
βπ)π) = ((π₯( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) |
50 | 42, 43, 44, 47, 49 | syl13anc 1240 |
. . . 4
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ)) β§ π β π)) β ((π₯(+gβ(Scalarβπ))π)( Β·π
βπ)π) = ((π₯( Β·π
βπ)π)(+gβπ)(π( Β·π
βπ)π))) |
51 | | eqid 2177 |
. . . . . 6
β’
(.rβ(Scalarβπ)) =
(.rβ(Scalarβπ)) |
52 | 1, 16, 18, 29, 51 | lmodvsass 13408 |
. . . . 5
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ)) β§ π β π)) β ((π₯(.rβ(Scalarβπ))π)( Β·π
βπ)π) = (π₯( Β·π
βπ)(π(
Β·π βπ)π))) |
53 | 42, 43, 44, 47, 52 | syl13anc 1240 |
. . . 4
β’ (((π β LMod β§ π β π) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ)) β§ π β π)) β ((π₯(.rβ(Scalarβπ))π)( Β·π
βπ)π) = (π₯( Β·π
βπ)(π(
Β·π βπ)π))) |
54 | 3 | sselda 3157 |
. . . . 5
β’ (((π β LMod β§ π β π) β§ π₯ β π) β π₯ β π) |
55 | | eqid 2177 |
. . . . . . 7
β’
(1rβ(Scalarβπ)) =
(1rβ(Scalarβπ)) |
56 | 1, 16, 18, 55 | lmodvs1 13411 |
. . . . . 6
β’ ((π β LMod β§ π₯ β π) β
((1rβ(Scalarβπ))( Β·π
βπ)π₯) = π₯) |
57 | 56 | adantlr 477 |
. . . . 5
β’ (((π β LMod β§ π β π) β§ π₯ β π) β
((1rβ(Scalarβπ))( Β·π
βπ)π₯) = π₯) |
58 | 54, 57 | syldan 282 |
. . . 4
β’ (((π β LMod β§ π β π) β§ π₯ β π) β
((1rβ(Scalarβπ))( Β·π
βπ)π₯) = π₯) |
59 | 10, 15, 17, 19, 20, 21, 22, 23, 25, 28, 31, 41, 50, 53, 58 | islmodd 13388 |
. . 3
β’ ((π β LMod β§ π β π) β π β LMod) |
60 | 3, 59 | jca 306 |
. 2
β’ ((π β LMod β§ π β π) β (π β π β§ π β LMod)) |
61 | | simprl 529 |
. . . 4
β’ ((π β LMod β§ (π β π β§ π β LMod)) β π β π) |
62 | 61, 9 | syldan 282 |
. . 3
β’ ((π β LMod β§ (π β π β§ π β LMod)) β π = (Baseβπ)) |
63 | | basfn 12522 |
. . . . . . . 8
β’ Base Fn
V |
64 | | simprr 531 |
. . . . . . . . 9
β’ ((π β LMod β§ (π β π β§ π β LMod)) β π β LMod) |
65 | 64 | elexd 2752 |
. . . . . . . 8
β’ ((π β LMod β§ (π β π β§ π β LMod)) β π β V) |
66 | | funfvex 5534 |
. . . . . . . . 9
β’ ((Fun
Base β§ π β dom
Base) β (Baseβπ)
β V) |
67 | 66 | funfni 5318 |
. . . . . . . 8
β’ ((Base Fn
V β§ π β V) β
(Baseβπ) β
V) |
68 | 63, 65, 67 | sylancr 414 |
. . . . . . 7
β’ ((π β LMod β§ (π β π β§ π β LMod)) β (Baseβπ) β V) |
69 | 62, 68 | eqeltrd 2254 |
. . . . . 6
β’ ((π β LMod β§ (π β π β§ π β LMod)) β π β V) |
70 | 4, 16 | ressscag 12643 |
. . . . . 6
β’ ((π β LMod β§ π β V) β
(Scalarβπ) =
(Scalarβπ)) |
71 | 69, 70 | syldan 282 |
. . . . 5
β’ ((π β LMod β§ (π β π β§ π β LMod)) β (Scalarβπ) = (Scalarβπ)) |
72 | 71 | eqcomd 2183 |
. . . 4
β’ ((π β LMod β§ (π β π β§ π β LMod)) β (Scalarβπ) = (Scalarβπ)) |
73 | | eqidd 2178 |
. . . 4
β’ ((π β LMod β§ (π β π β§ π β LMod)) β
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ))) |
74 | 1 | a1i 9 |
. . . 4
β’ ((π β LMod β§ (π β π β§ π β LMod)) β π = (Baseβπ)) |
75 | 4 | a1i 9 |
. . . . . 6
β’ ((π β LMod β§ (π β π β§ π β LMod)) β π = (π βΎs π)) |
76 | | eqidd 2178 |
. . . . . 6
β’ ((π β LMod β§ (π β π β§ π β LMod)) β
(+gβπ) =
(+gβπ)) |
77 | | simpl 109 |
. . . . . 6
β’ ((π β LMod β§ (π β π β§ π β LMod)) β π β LMod) |
78 | 75, 76, 69, 77 | ressplusgd 12589 |
. . . . 5
β’ ((π β LMod β§ (π β π β§ π β LMod)) β
(+gβπ) =
(+gβπ)) |
79 | 78 | eqcomd 2183 |
. . . 4
β’ ((π β LMod β§ (π β π β§ π β LMod)) β
(+gβπ) =
(+gβπ)) |
80 | 4, 18 | ressvscag 12644 |
. . . . . 6
β’ ((π β LMod β§ π β V) β (
Β·π βπ) = ( Β·π
βπ)) |
81 | 69, 80 | syldan 282 |
. . . . 5
β’ ((π β LMod β§ (π β π β§ π β LMod)) β (
Β·π βπ) = ( Β·π
βπ)) |
82 | 81 | eqcomd 2183 |
. . . 4
β’ ((π β LMod β§ (π β π β§ π β LMod)) β (
Β·π βπ) = ( Β·π
βπ)) |
83 | 2 | a1i 9 |
. . . 4
β’ ((π β LMod β§ (π β π β§ π β LMod)) β π = (LSubSpβπ)) |
84 | 62, 61 | eqsstrrd 3194 |
. . . 4
β’ ((π β LMod β§ (π β π β§ π β LMod)) β (Baseβπ) β π) |
85 | | lmodgrp 13389 |
. . . . . 6
β’ (π β LMod β π β Grp) |
86 | 85 | ad2antll 491 |
. . . . 5
β’ ((π β LMod β§ (π β π β§ π β LMod)) β π β Grp) |
87 | | eqid 2177 |
. . . . . 6
β’
(Baseβπ) =
(Baseβπ) |
88 | | eqid 2177 |
. . . . . 6
β’
(0gβπ) = (0gβπ) |
89 | 87, 88 | grpidcl 12909 |
. . . . 5
β’ (π β Grp β
(0gβπ)
β (Baseβπ)) |
90 | | elex2 2755 |
. . . . 5
β’
((0gβπ) β (Baseβπ) β βπ π β (Baseβπ)) |
91 | 86, 89, 90 | 3syl 17 |
. . . 4
β’ ((π β LMod β§ (π β π β§ π β LMod)) β βπ π β (Baseβπ)) |
92 | 64 | adantr 276 |
. . . . 5
β’ (((π β LMod β§ (π β π β§ π β LMod)) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β (Baseβπ) β§ π β (Baseβπ))) β π β LMod) |
93 | | eqid 2177 |
. . . . . . 7
β’
(LSubSpβπ) =
(LSubSpβπ) |
94 | 87, 93 | lss1 13454 |
. . . . . 6
β’ (π β LMod β
(Baseβπ) β
(LSubSpβπ)) |
95 | 92, 94 | syl 14 |
. . . . 5
β’ (((π β LMod β§ (π β π β§ π β LMod)) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β (Baseβπ) β§ π β (Baseβπ))) β (Baseβπ) β (LSubSpβπ)) |
96 | | simpr 110 |
. . . . 5
β’ (((π β LMod β§ (π β π β§ π β LMod)) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β (Baseβπ) β§ π β (Baseβπ))) β (π₯ β (Baseβ(Scalarβπ)) β§ π β (Baseβπ) β§ π β (Baseβπ))) |
97 | | eqid 2177 |
. . . . . 6
β’
(Scalarβπ) =
(Scalarβπ) |
98 | | eqid 2177 |
. . . . . 6
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
99 | | eqid 2177 |
. . . . . 6
β’
(+gβπ) = (+gβπ) |
100 | | eqid 2177 |
. . . . . 6
β’ (
Β·π βπ) = ( Β·π
βπ) |
101 | 97, 98, 99, 100, 93 | lssclg 13456 |
. . . . 5
β’ ((π β LMod β§
(Baseβπ) β
(LSubSpβπ) β§
(π₯ β
(Baseβ(Scalarβπ)) β§ π β (Baseβπ) β§ π β (Baseβπ))) β ((π₯( Β·π
βπ)π)(+gβπ)π) β (Baseβπ)) |
102 | 92, 95, 96, 101 | syl3anc 1238 |
. . . 4
β’ (((π β LMod β§ (π β π β§ π β LMod)) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β (Baseβπ) β§ π β (Baseβπ))) β ((π₯( Β·π
βπ)π)(+gβπ)π) β (Baseβπ)) |
103 | 72, 73, 74, 79, 82, 83, 84, 91, 102, 77 | islssmd 13451 |
. . 3
β’ ((π β LMod β§ (π β π β§ π β LMod)) β (Baseβπ) β π) |
104 | 62, 103 | eqeltrd 2254 |
. 2
β’ ((π β LMod β§ (π β π β§ π β LMod)) β π β π) |
105 | 60, 104 | impbida 596 |
1
β’ (π β LMod β (π β π β (π β π β§ π β LMod))) |