| Step | Hyp | Ref
| Expression |
| 1 | | islss3.v |
. . . 4
⊢ 𝑉 = (Base‘𝑊) |
| 2 | | islss3.s |
. . . 4
⊢ 𝑆 = (LSubSp‘𝑊) |
| 3 | 1, 2 | lssssg 13916 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ 𝑉) |
| 4 | | islss3.x |
. . . . . . 7
⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| 5 | 4 | a1i 9 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑋 = (𝑊 ↾s 𝑈)) |
| 6 | 1 | a1i 9 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑉 = (Base‘𝑊)) |
| 7 | | simpl 109 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑊 ∈ LMod) |
| 8 | | simpr 110 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ 𝑉) |
| 9 | 5, 6, 7, 8 | ressbas2d 12746 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 = (Base‘𝑋)) |
| 10 | 3, 9 | syldan 282 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 = (Base‘𝑋)) |
| 11 | 4 | a1i 9 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑋 = (𝑊 ↾s 𝑈)) |
| 12 | | eqidd 2197 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (+g‘𝑊) = (+g‘𝑊)) |
| 13 | | simpr 110 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ 𝑆) |
| 14 | | simpl 109 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑊 ∈ LMod) |
| 15 | 11, 12, 13, 14 | ressplusgd 12806 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (+g‘𝑊) = (+g‘𝑋)) |
| 16 | | eqid 2196 |
. . . . 5
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
| 17 | 4, 16 | ressscag 12860 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑊) = (Scalar‘𝑋)) |
| 18 | | eqid 2196 |
. . . . 5
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
| 19 | 4, 18 | ressvscag 12861 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑋)) |
| 20 | | eqidd 2197 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (Base‘(Scalar‘𝑊)) =
(Base‘(Scalar‘𝑊))) |
| 21 | | eqidd 2197 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) →
(+g‘(Scalar‘𝑊)) =
(+g‘(Scalar‘𝑊))) |
| 22 | | eqidd 2197 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) →
(.r‘(Scalar‘𝑊)) =
(.r‘(Scalar‘𝑊))) |
| 23 | | eqidd 2197 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) →
(1r‘(Scalar‘𝑊)) =
(1r‘(Scalar‘𝑊))) |
| 24 | 16 | lmodring 13851 |
. . . . 5
⊢ (𝑊 ∈ LMod →
(Scalar‘𝑊) ∈
Ring) |
| 25 | 24 | adantr 276 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑊) ∈ Ring) |
| 26 | 2 | lsssubg 13933 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 27 | 4 | subggrp 13307 |
. . . . 5
⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑋 ∈ Grp) |
| 28 | 26, 27 | syl 14 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ Grp) |
| 29 | | eqid 2196 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
| 30 | 16, 18, 29, 2 | lssvscl 13931 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑈)) → (𝑥( ·𝑠
‘𝑊)𝑎) ∈ 𝑈) |
| 31 | 30 | 3impb 1201 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑈) → (𝑥( ·𝑠
‘𝑊)𝑎) ∈ 𝑈) |
| 32 | | simpll 527 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → 𝑊 ∈ LMod) |
| 33 | | simpr1 1005 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → 𝑥 ∈ (Base‘(Scalar‘𝑊))) |
| 34 | 3 | adantr 276 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → 𝑈 ⊆ 𝑉) |
| 35 | | simpr2 1006 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → 𝑎 ∈ 𝑈) |
| 36 | 34, 35 | sseldd 3184 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → 𝑎 ∈ 𝑉) |
| 37 | | simpr3 1007 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → 𝑏 ∈ 𝑈) |
| 38 | 34, 37 | sseldd 3184 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → 𝑏 ∈ 𝑉) |
| 39 | | eqid 2196 |
. . . . . 6
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 40 | 1, 39, 16, 18, 29 | lmodvsdi 13867 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑥( ·𝑠
‘𝑊)(𝑎(+g‘𝑊)𝑏)) = ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)(𝑥( ·𝑠
‘𝑊)𝑏))) |
| 41 | 32, 33, 36, 38, 40 | syl13anc 1251 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → (𝑥( ·𝑠
‘𝑊)(𝑎(+g‘𝑊)𝑏)) = ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)(𝑥( ·𝑠
‘𝑊)𝑏))) |
| 42 | | simpll 527 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏 ∈ 𝑈)) → 𝑊 ∈ LMod) |
| 43 | | simpr1 1005 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏 ∈ 𝑈)) → 𝑥 ∈ (Base‘(Scalar‘𝑊))) |
| 44 | | simpr2 1006 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏 ∈ 𝑈)) → 𝑎 ∈ (Base‘(Scalar‘𝑊))) |
| 45 | 3 | adantr 276 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏 ∈ 𝑈)) → 𝑈 ⊆ 𝑉) |
| 46 | | simpr3 1007 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏 ∈ 𝑈)) → 𝑏 ∈ 𝑈) |
| 47 | 45, 46 | sseldd 3184 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏 ∈ 𝑈)) → 𝑏 ∈ 𝑉) |
| 48 | | eqid 2196 |
. . . . . 6
⊢
(+g‘(Scalar‘𝑊)) =
(+g‘(Scalar‘𝑊)) |
| 49 | 1, 39, 16, 18, 29, 48 | lmodvsdir 13868 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏 ∈ 𝑉)) → ((𝑥(+g‘(Scalar‘𝑊))𝑎)( ·𝑠
‘𝑊)𝑏) = ((𝑥( ·𝑠
‘𝑊)𝑏)(+g‘𝑊)(𝑎( ·𝑠
‘𝑊)𝑏))) |
| 50 | 42, 43, 44, 47, 49 | syl13anc 1251 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏 ∈ 𝑈)) → ((𝑥(+g‘(Scalar‘𝑊))𝑎)( ·𝑠
‘𝑊)𝑏) = ((𝑥( ·𝑠
‘𝑊)𝑏)(+g‘𝑊)(𝑎( ·𝑠
‘𝑊)𝑏))) |
| 51 | | eqid 2196 |
. . . . . 6
⊢
(.r‘(Scalar‘𝑊)) =
(.r‘(Scalar‘𝑊)) |
| 52 | 1, 16, 18, 29, 51 | lmodvsass 13869 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏 ∈ 𝑉)) → ((𝑥(.r‘(Scalar‘𝑊))𝑎)( ·𝑠
‘𝑊)𝑏) = (𝑥( ·𝑠
‘𝑊)(𝑎(
·𝑠 ‘𝑊)𝑏))) |
| 53 | 42, 43, 44, 47, 52 | syl13anc 1251 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏 ∈ 𝑈)) → ((𝑥(.r‘(Scalar‘𝑊))𝑎)( ·𝑠
‘𝑊)𝑏) = (𝑥( ·𝑠
‘𝑊)(𝑎(
·𝑠 ‘𝑊)𝑏))) |
| 54 | 3 | sselda 3183 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑉) |
| 55 | | eqid 2196 |
. . . . . . 7
⊢
(1r‘(Scalar‘𝑊)) =
(1r‘(Scalar‘𝑊)) |
| 56 | 1, 16, 18, 55 | lmodvs1 13872 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝑉) →
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑥) = 𝑥) |
| 57 | 56 | adantlr 477 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑉) →
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑥) = 𝑥) |
| 58 | 54, 57 | syldan 282 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) →
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑥) = 𝑥) |
| 59 | 10, 15, 17, 19, 20, 21, 22, 23, 25, 28, 31, 41, 50, 53, 58 | islmodd 13849 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LMod) |
| 60 | 3, 59 | jca 306 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) |
| 61 | | simprl 529 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → 𝑈 ⊆ 𝑉) |
| 62 | 61, 9 | syldan 282 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → 𝑈 = (Base‘𝑋)) |
| 63 | | basfn 12736 |
. . . . . . . 8
⊢ Base Fn
V |
| 64 | | simprr 531 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → 𝑋 ∈ LMod) |
| 65 | 64 | elexd 2776 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → 𝑋 ∈ V) |
| 66 | | funfvex 5575 |
. . . . . . . . 9
⊢ ((Fun
Base ∧ 𝑋 ∈ dom
Base) → (Base‘𝑋)
∈ V) |
| 67 | 66 | funfni 5358 |
. . . . . . . 8
⊢ ((Base Fn
V ∧ 𝑋 ∈ V) →
(Base‘𝑋) ∈
V) |
| 68 | 63, 65, 67 | sylancr 414 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → (Base‘𝑋) ∈ V) |
| 69 | 62, 68 | eqeltrd 2273 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → 𝑈 ∈ V) |
| 70 | 4, 16 | ressscag 12860 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ V) →
(Scalar‘𝑊) =
(Scalar‘𝑋)) |
| 71 | 69, 70 | syldan 282 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → (Scalar‘𝑊) = (Scalar‘𝑋)) |
| 72 | 71 | eqcomd 2202 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → (Scalar‘𝑋) = (Scalar‘𝑊)) |
| 73 | | eqidd 2197 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) →
(Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))) |
| 74 | 1 | a1i 9 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → 𝑉 = (Base‘𝑊)) |
| 75 | 4 | a1i 9 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → 𝑋 = (𝑊 ↾s 𝑈)) |
| 76 | | eqidd 2197 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) →
(+g‘𝑊) =
(+g‘𝑊)) |
| 77 | | simpl 109 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → 𝑊 ∈ LMod) |
| 78 | 75, 76, 69, 77 | ressplusgd 12806 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) →
(+g‘𝑊) =
(+g‘𝑋)) |
| 79 | 78 | eqcomd 2202 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) →
(+g‘𝑋) =
(+g‘𝑊)) |
| 80 | 4, 18 | ressvscag 12861 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ V) → (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑋)) |
| 81 | 69, 80 | syldan 282 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑋)) |
| 82 | 81 | eqcomd 2202 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → (
·𝑠 ‘𝑋) = ( ·𝑠
‘𝑊)) |
| 83 | 2 | a1i 9 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → 𝑆 = (LSubSp‘𝑊)) |
| 84 | 62, 61 | eqsstrrd 3220 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → (Base‘𝑋) ⊆ 𝑉) |
| 85 | | lmodgrp 13850 |
. . . . . 6
⊢ (𝑋 ∈ LMod → 𝑋 ∈ Grp) |
| 86 | 85 | ad2antll 491 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → 𝑋 ∈ Grp) |
| 87 | | eqid 2196 |
. . . . . 6
⊢
(Base‘𝑋) =
(Base‘𝑋) |
| 88 | | eqid 2196 |
. . . . . 6
⊢
(0g‘𝑋) = (0g‘𝑋) |
| 89 | 87, 88 | grpidcl 13161 |
. . . . 5
⊢ (𝑋 ∈ Grp →
(0g‘𝑋)
∈ (Base‘𝑋)) |
| 90 | | elex2 2779 |
. . . . 5
⊢
((0g‘𝑋) ∈ (Base‘𝑋) → ∃𝑗 𝑗 ∈ (Base‘𝑋)) |
| 91 | 86, 89, 90 | 3syl 17 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → ∃𝑗 𝑗 ∈ (Base‘𝑋)) |
| 92 | 64 | adantr 276 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) → 𝑋 ∈ LMod) |
| 93 | | eqid 2196 |
. . . . . . 7
⊢
(LSubSp‘𝑋) =
(LSubSp‘𝑋) |
| 94 | 87, 93 | lss1 13918 |
. . . . . 6
⊢ (𝑋 ∈ LMod →
(Base‘𝑋) ∈
(LSubSp‘𝑋)) |
| 95 | 92, 94 | syl 14 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) → (Base‘𝑋) ∈ (LSubSp‘𝑋)) |
| 96 | | simpr 110 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) → (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) |
| 97 | | eqid 2196 |
. . . . . 6
⊢
(Scalar‘𝑋) =
(Scalar‘𝑋) |
| 98 | | eqid 2196 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋)) |
| 99 | | eqid 2196 |
. . . . . 6
⊢
(+g‘𝑋) = (+g‘𝑋) |
| 100 | | eqid 2196 |
. . . . . 6
⊢ (
·𝑠 ‘𝑋) = ( ·𝑠
‘𝑋) |
| 101 | 97, 98, 99, 100, 93 | lssclg 13920 |
. . . . 5
⊢ ((𝑋 ∈ LMod ∧
(Base‘𝑋) ∈
(LSubSp‘𝑋) ∧
(𝑥 ∈
(Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) → ((𝑥( ·𝑠
‘𝑋)𝑎)(+g‘𝑋)𝑏) ∈ (Base‘𝑋)) |
| 102 | 92, 95, 96, 101 | syl3anc 1249 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) → ((𝑥( ·𝑠
‘𝑋)𝑎)(+g‘𝑋)𝑏) ∈ (Base‘𝑋)) |
| 103 | 72, 73, 74, 79, 82, 83, 84, 91, 102, 77 | islssmd 13915 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → (Base‘𝑋) ∈ 𝑆) |
| 104 | 62, 103 | eqeltrd 2273 |
. 2
⊢ ((𝑊 ∈ LMod ∧ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod)) → 𝑈 ∈ 𝑆) |
| 105 | 60, 104 | impbida 596 |
1
⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod))) |