ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsnneg GIF version

Theorem lspsnneg 13976
Description: Negation does not change the span of a singleton. (Contributed by NM, 24-Apr-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsnneg.v 𝑉 = (Base‘𝑊)
lspsnneg.m 𝑀 = (invg𝑊)
lspsnneg.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsnneg ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{(𝑀𝑋)}) = (𝑁‘{𝑋}))

Proof of Theorem lspsnneg
StepHypRef Expression
1 lspsnneg.v . . . . . 6 𝑉 = (Base‘𝑊)
2 lspsnneg.m . . . . . 6 𝑀 = (invg𝑊)
3 eqid 2196 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2196 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
5 eqid 2196 . . . . . 6 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
6 eqid 2196 . . . . . 6 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
71, 2, 3, 4, 5, 6lmodvneg1 13886 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (𝑀𝑋))
87sneqd 3635 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋)} = {(𝑀𝑋)})
98fveq2d 5562 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋)}) = (𝑁‘{(𝑀𝑋)}))
10 simpl 109 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
113lmodfgrp 13852 . . . . . 6 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
12 eqid 2196 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
133, 12, 5lmod1cl 13871 . . . . . 6 (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
1412, 6grpinvcl 13180 . . . . . 6 (((Scalar‘𝑊) ∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
1511, 13, 14syl2anc 411 . . . . 5 (𝑊 ∈ LMod → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
1615adantr 276 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
17 simpr 110 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋𝑉)
18 lspsnneg.n . . . . 5 𝑁 = (LSpan‘𝑊)
193, 12, 1, 4, 18lspsnvsi 13974 . . . 4 ((𝑊 ∈ LMod ∧ ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋)}) ⊆ (𝑁‘{𝑋}))
2010, 16, 17, 19syl3anc 1249 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋)}) ⊆ (𝑁‘{𝑋}))
219, 20eqsstrrd 3220 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{(𝑀𝑋)}) ⊆ (𝑁‘{𝑋}))
221, 2lmodvnegcl 13884 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑀𝑋) ∈ 𝑉)
231, 2, 3, 4, 5, 6lmodvneg1 13886 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑀𝑋) ∈ 𝑉) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑀𝑋)) = (𝑀‘(𝑀𝑋)))
2422, 23syldan 282 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑀𝑋)) = (𝑀‘(𝑀𝑋)))
25 lmodgrp 13850 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
261, 2grpinvinv 13199 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → (𝑀‘(𝑀𝑋)) = 𝑋)
2725, 26sylan 283 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑀‘(𝑀𝑋)) = 𝑋)
2824, 27eqtrd 2229 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑀𝑋)) = 𝑋)
2928sneqd 3635 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑀𝑋))} = {𝑋})
3029fveq2d 5562 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑀𝑋))}) = (𝑁‘{𝑋}))
313, 12, 1, 4, 18lspsnvsi 13974 . . . 4 ((𝑊 ∈ LMod ∧ ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑀𝑋) ∈ 𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑀𝑋))}) ⊆ (𝑁‘{(𝑀𝑋)}))
3210, 16, 22, 31syl3anc 1249 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑀𝑋))}) ⊆ (𝑁‘{(𝑀𝑋)}))
3330, 32eqsstrrd 3220 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ⊆ (𝑁‘{(𝑀𝑋)}))
3421, 33eqssd 3200 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{(𝑀𝑋)}) = (𝑁‘{𝑋}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wss 3157  {csn 3622  cfv 5258  (class class class)co 5922  Basecbs 12678  Scalarcsca 12758   ·𝑠 cvsca 12759  Grpcgrp 13132  invgcminusg 13133  1rcur 13515  LModclmod 13843  LSpanclspn 13942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-mgp 13477  df-ur 13516  df-ring 13554  df-lmod 13845  df-lssm 13909  df-lsp 13943
This theorem is referenced by:  lspsnsub  13977  lmodindp1  13984
  Copyright terms: Public domain W3C validator