| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > entr | GIF version | ||
| Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| Ref | Expression |
|---|---|
| entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ener 6929 | . . . 4 ⊢ ≈ Er V | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → ≈ Er V) |
| 3 | 2 | ertr 6693 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
| 4 | 3 | mptru 1404 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊤wtru 1396 Vcvv 2799 class class class wbr 4082 Er wer 6675 ≈ cen 6883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-er 6678 df-en 6886 |
| This theorem is referenced by: entri 6936 en2sn 6964 xpsnen2g 6984 enen1 6997 enen2 6998 ssenen 7008 phplem4 7012 snnen2og 7016 php5dom 7020 phplem4on 7025 dif1en 7037 dif1enen 7038 fisbth 7041 diffisn 7051 exmidpw2en 7070 unsnfidcex 7078 unsnfidcel 7079 f1finf1o 7110 en1eqsn 7111 endjusym 7259 carden2bex 7358 pm54.43 7359 pr2ne 7361 djuen 7389 djuenun 7390 djuassen 7395 frecfzen2 10644 uzennn 10653 hashunlem 11021 hashxp 11043 1nprm 12631 hashdvds 12738 4sqlem11 12919 unennn 12963 ennnfonelemen 12987 ennnfonelemim 12990 exmidunben 12992 ctinfom 12994 ctinf 12996 umgredgnlp 15944 usgrsizedgen 16005 pwf1oexmid 16324 nnnninfen 16346 |
| Copyright terms: Public domain | W3C validator |