Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > entr | GIF version |
Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
Ref | Expression |
---|---|
entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ener 6717 | . . . 4 ⊢ ≈ Er V | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → ≈ Er V) |
3 | 2 | ertr 6488 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
4 | 3 | mptru 1344 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ⊤wtru 1336 Vcvv 2712 class class class wbr 3965 Er wer 6470 ≈ cen 6676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-er 6473 df-en 6679 |
This theorem is referenced by: entri 6724 en2sn 6751 xpsnen2g 6767 enen1 6778 enen2 6779 ssenen 6789 phplem4 6793 snnen2og 6797 php5dom 6801 phplem4on 6805 dif1en 6817 dif1enen 6818 fisbth 6821 diffisn 6831 unsnfidcex 6857 unsnfidcel 6858 f1finf1o 6884 en1eqsn 6885 endjusym 7030 carden2bex 7107 pm54.43 7108 pr2ne 7110 djuen 7129 djuenun 7130 djuassen 7135 frecfzen2 10308 uzennn 10317 hashunlem 10660 hashxp 10682 1nprm 11971 hashdvds 12073 unennn 12098 ennnfonelemen 12122 ennnfonelemim 12125 exmidunben 12127 ctinfom 12129 ctinf 12131 pwf1oexmid 13531 |
Copyright terms: Public domain | W3C validator |