| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > entr | GIF version | ||
| Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| Ref | Expression |
|---|---|
| entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ener 6856 | . . . 4 ⊢ ≈ Er V | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → ≈ Er V) |
| 3 | 2 | ertr 6625 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
| 4 | 3 | mptru 1381 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊤wtru 1373 Vcvv 2771 class class class wbr 4043 Er wer 6607 ≈ cen 6815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-er 6610 df-en 6818 |
| This theorem is referenced by: entri 6863 en2sn 6890 xpsnen2g 6906 enen1 6919 enen2 6920 ssenen 6930 phplem4 6934 snnen2og 6938 php5dom 6942 phplem4on 6946 dif1en 6958 dif1enen 6959 fisbth 6962 diffisn 6972 exmidpw2en 6991 unsnfidcex 6999 unsnfidcel 7000 f1finf1o 7031 en1eqsn 7032 endjusym 7180 carden2bex 7279 pm54.43 7280 pr2ne 7282 djuen 7305 djuenun 7306 djuassen 7311 frecfzen2 10553 uzennn 10562 hashunlem 10930 hashxp 10952 1nprm 12355 hashdvds 12462 4sqlem11 12643 unennn 12687 ennnfonelemen 12711 ennnfonelemim 12714 exmidunben 12716 ctinfom 12718 ctinf 12720 pwf1oexmid 15800 nnnninfen 15822 |
| Copyright terms: Public domain | W3C validator |