| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > entr | GIF version | ||
| Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| Ref | Expression |
|---|---|
| entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ener 6884 | . . . 4 ⊢ ≈ Er V | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → ≈ Er V) |
| 3 | 2 | ertr 6648 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
| 4 | 3 | mptru 1382 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊤wtru 1374 Vcvv 2773 class class class wbr 4051 Er wer 6630 ≈ cen 6838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-er 6633 df-en 6841 |
| This theorem is referenced by: entri 6891 en2sn 6919 xpsnen2g 6939 enen1 6952 enen2 6953 ssenen 6963 phplem4 6967 snnen2og 6971 php5dom 6975 phplem4on 6979 dif1en 6991 dif1enen 6992 fisbth 6995 diffisn 7005 exmidpw2en 7024 unsnfidcex 7032 unsnfidcel 7033 f1finf1o 7064 en1eqsn 7065 endjusym 7213 carden2bex 7312 pm54.43 7313 pr2ne 7315 djuen 7339 djuenun 7340 djuassen 7345 frecfzen2 10594 uzennn 10603 hashunlem 10971 hashxp 10993 1nprm 12511 hashdvds 12618 4sqlem11 12799 unennn 12843 ennnfonelemen 12867 ennnfonelemim 12870 exmidunben 12872 ctinfom 12874 ctinf 12876 pwf1oexmid 16077 nnnninfen 16099 |
| Copyright terms: Public domain | W3C validator |