| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > entr | GIF version | ||
| Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| Ref | Expression |
|---|---|
| entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ener 6847 | . . . 4 ⊢ ≈ Er V | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → ≈ Er V) |
| 3 | 2 | ertr 6616 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
| 4 | 3 | mptru 1373 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊤wtru 1365 Vcvv 2763 class class class wbr 4034 Er wer 6598 ≈ cen 6806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-er 6601 df-en 6809 |
| This theorem is referenced by: entri 6854 en2sn 6881 xpsnen2g 6897 enen1 6910 enen2 6911 ssenen 6921 phplem4 6925 snnen2og 6929 php5dom 6933 phplem4on 6937 dif1en 6949 dif1enen 6950 fisbth 6953 diffisn 6963 exmidpw2en 6982 unsnfidcex 6990 unsnfidcel 6991 f1finf1o 7022 en1eqsn 7023 endjusym 7171 carden2bex 7268 pm54.43 7269 pr2ne 7271 djuen 7294 djuenun 7295 djuassen 7300 frecfzen2 10536 uzennn 10545 hashunlem 10913 hashxp 10935 1nprm 12307 hashdvds 12414 4sqlem11 12595 unennn 12639 ennnfonelemen 12663 ennnfonelemim 12666 exmidunben 12668 ctinfom 12670 ctinf 12672 pwf1oexmid 15730 nnnninfen 15752 |
| Copyright terms: Public domain | W3C validator |