![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fliftrel | GIF version |
Description: 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftrel | ⊢ (𝜑 → 𝐹 ⊆ (𝑅 × 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flift.1 | . 2 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
2 | flift.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
3 | flift.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
4 | opelxpi 4531 | . . . . 5 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) | |
5 | 2, 3, 4 | syl2anc 406 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) |
6 | eqid 2115 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
7 | 5, 6 | fmptd 5528 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉):𝑋⟶(𝑅 × 𝑆)) |
8 | frn 5239 | . . 3 ⊢ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉):𝑋⟶(𝑅 × 𝑆) → ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ⊆ (𝑅 × 𝑆)) | |
9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ⊆ (𝑅 × 𝑆)) |
10 | 1, 9 | eqsstrid 3109 | 1 ⊢ (𝜑 → 𝐹 ⊆ (𝑅 × 𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∈ wcel 1463 ⊆ wss 3037 〈cop 3496 ↦ cmpt 3949 × cxp 4497 ran crn 4500 ⟶wf 5077 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-rab 2399 df-v 2659 df-sbc 2879 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-fv 5089 |
This theorem is referenced by: fliftcnv 5650 fliftfun 5651 fliftf 5654 qliftrel 6462 |
Copyright terms: Public domain | W3C validator |