| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fliftrel | GIF version | ||
| Description: 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
| flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
| flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| fliftrel | ⊢ (𝜑 → 𝐹 ⊆ (𝑅 × 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flift.1 | . 2 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
| 2 | flift.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
| 3 | flift.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
| 4 | opelxpi 4728 | . . . . 5 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) | |
| 5 | 2, 3, 4 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) |
| 6 | eqid 2209 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
| 7 | 5, 6 | fmptd 5762 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉):𝑋⟶(𝑅 × 𝑆)) |
| 8 | frn 5458 | . . 3 ⊢ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉):𝑋⟶(𝑅 × 𝑆) → ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ⊆ (𝑅 × 𝑆)) | |
| 9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ⊆ (𝑅 × 𝑆)) |
| 10 | 1, 9 | eqsstrid 3250 | 1 ⊢ (𝜑 → 𝐹 ⊆ (𝑅 × 𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 ⊆ wss 3177 〈cop 3649 ↦ cmpt 4124 × cxp 4694 ran crn 4697 ⟶wf 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 |
| This theorem is referenced by: fliftcnv 5892 fliftfun 5893 fliftf 5896 qliftrel 6731 |
| Copyright terms: Public domain | W3C validator |