ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftrel GIF version

Theorem fliftrel 5553
Description: 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftrel (𝜑𝐹 ⊆ (𝑅 × 𝑆))
Distinct variable groups:   𝑥,𝑅   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftrel
StepHypRef Expression
1 flift.1 . 2 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
2 flift.2 . . . . 5 ((𝜑𝑥𝑋) → 𝐴𝑅)
3 flift.3 . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑆)
4 opelxpi 4459 . . . . 5 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆))
52, 3, 4syl2anc 403 . . . 4 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆))
6 eqid 2088 . . . 4 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
75, 6fmptd 5436 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩):𝑋⟶(𝑅 × 𝑆))
8 frn 5155 . . 3 ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩):𝑋⟶(𝑅 × 𝑆) → ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ⊆ (𝑅 × 𝑆))
97, 8syl 14 . 2 (𝜑 → ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ⊆ (𝑅 × 𝑆))
101, 9syl5eqss 3068 1 (𝜑𝐹 ⊆ (𝑅 × 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  wss 2997  cop 3444  cmpt 3891   × cxp 4426  ran crn 4429  wf 4998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2839  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010
This theorem is referenced by:  fliftcnv  5556  fliftfun  5557  fliftf  5560  qliftrel  6351
  Copyright terms: Public domain W3C validator