ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftrel GIF version

Theorem fliftrel 5868
Description: 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftrel (𝜑𝐹 ⊆ (𝑅 × 𝑆))
Distinct variable groups:   𝑥,𝑅   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftrel
StepHypRef Expression
1 flift.1 . 2 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
2 flift.2 . . . . 5 ((𝜑𝑥𝑋) → 𝐴𝑅)
3 flift.3 . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑆)
4 opelxpi 4711 . . . . 5 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆))
52, 3, 4syl2anc 411 . . . 4 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆))
6 eqid 2206 . . . 4 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
75, 6fmptd 5741 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩):𝑋⟶(𝑅 × 𝑆))
8 frn 5440 . . 3 ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩):𝑋⟶(𝑅 × 𝑆) → ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ⊆ (𝑅 × 𝑆))
97, 8syl 14 . 2 (𝜑 → ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ⊆ (𝑅 × 𝑆))
101, 9eqsstrid 3240 1 (𝜑𝐹 ⊆ (𝑅 × 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wss 3167  cop 3637  cmpt 4109   × cxp 4677  ran crn 4680  wf 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284
This theorem is referenced by:  fliftcnv  5871  fliftfun  5872  fliftf  5875  qliftrel  6708
  Copyright terms: Public domain W3C validator