| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnfvimad | GIF version | ||
| Description: A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fnfvimad.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fnfvimad.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| fnfvimad.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fnfvimad | ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 3425 | . . 3 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐶 | |
| 2 | imass2 5104 | . . 3 ⊢ ((𝐴 ∩ 𝐶) ⊆ 𝐶 → (𝐹 “ (𝐴 ∩ 𝐶)) ⊆ (𝐹 “ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹 “ (𝐴 ∩ 𝐶)) ⊆ (𝐹 “ 𝐶) |
| 4 | fnfvimad.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 5 | inss1 3424 | . . . 4 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐴 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ 𝐴) |
| 7 | fnfvimad.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 8 | fnfvimad.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 9 | 7, 8 | elind 3389 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴 ∩ 𝐶)) |
| 10 | fnfvima 5878 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) ⊆ 𝐴 ∧ 𝐵 ∈ (𝐴 ∩ 𝐶)) → (𝐹‘𝐵) ∈ (𝐹 “ (𝐴 ∩ 𝐶))) | |
| 11 | 4, 6, 9, 10 | syl3anc 1271 | . 2 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ (𝐴 ∩ 𝐶))) |
| 12 | 3, 11 | sselid 3222 | 1 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∩ cin 3196 ⊆ wss 3197 “ cima 4722 Fn wfn 5313 ‘cfv 5318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |