ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0ne0i GIF version

Theorem gt0ne0i 8558
Description: Positive means nonzero (useful for ordering theorems involving division). (Contributed by NM, 16-Sep-1999.)
Hypothesis
Ref Expression
lt2.1 𝐴 ∈ ℝ
Assertion
Ref Expression
gt0ne0i (0 < 𝐴𝐴 ≠ 0)

Proof of Theorem gt0ne0i
StepHypRef Expression
1 0re 8071 . 2 0 ∈ ℝ
2 lt2.1 . 2 𝐴 ∈ ℝ
31, 2ltnei 8175 1 (0 < 𝐴𝐴 ≠ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  wne 2375   class class class wbr 4043  cr 7923  0cc0 7924   < clt 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021  ax-rnegex 8033  ax-pre-ltirr 8036
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-pnf 8108  df-mnf 8109  df-ltxr 8111
This theorem is referenced by:  gt0ne0ii  8559
  Copyright terms: Public domain W3C validator