ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0ne0ii GIF version

Theorem gt0ne0ii 8630
Description: Positive implies nonzero. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
lt2.1 𝐴 ∈ ℝ
gt0ne0i.2 0 < 𝐴
Assertion
Ref Expression
gt0ne0ii 𝐴 ≠ 0

Proof of Theorem gt0ne0ii
StepHypRef Expression
1 gt0ne0i.2 . 2 0 < 𝐴
2 lt2.1 . . 3 𝐴 ∈ ℝ
32gt0ne0i 8629 . 2 (0 < 𝐴𝐴 ≠ 0)
41, 3ax-mp 5 1 𝐴 ≠ 0
Colors of variables: wff set class
Syntax hints:  wcel 2200  wne 2400   class class class wbr 4082  cr 7994  0cc0 7995   < clt 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-rnegex 8104  ax-pre-ltirr 8107
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-pnf 8179  df-mnf 8180  df-ltxr 8182
This theorem is referenced by:  nnne0i  9138  2ne0  9198  3ne0  9201  4ne0  9204  ene0  12289
  Copyright terms: Public domain W3C validator