ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islssm GIF version

Theorem islssm 14037
Description: The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lssset.f 𝐹 = (Scalar‘𝑊)
lssset.b 𝐵 = (Base‘𝐹)
lssset.v 𝑉 = (Base‘𝑊)
lssset.p + = (+g𝑊)
lssset.t · = ( ·𝑠𝑊)
lssset.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
islssm (𝑈𝑆 ↔ (𝑈𝑉 ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
Distinct variable groups:   𝑥,𝐵   𝑎,𝑏,𝑥,𝑊   𝑈,𝑎,𝑏,𝑥,𝑗
Allowed substitution hints:   𝐵(𝑗,𝑎,𝑏)   + (𝑥,𝑗,𝑎,𝑏)   𝑆(𝑥,𝑗,𝑎,𝑏)   · (𝑥,𝑗,𝑎,𝑏)   𝐹(𝑥,𝑗,𝑎,𝑏)   𝑉(𝑥,𝑗,𝑎,𝑏)   𝑊(𝑗)

Proof of Theorem islssm
Dummy variables 𝑠 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lssset.s . . 3 𝑆 = (LSubSp‘𝑊)
21lssmex 14035 . 2 (𝑈𝑆𝑊 ∈ V)
3 eleq1w 2265 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝑈𝑗𝑈))
43cbvexv 1941 . . . . 5 (∃𝑘 𝑘𝑈 ↔ ∃𝑗 𝑗𝑈)
5 ssel 3186 . . . . . . 7 (𝑈𝑉 → (𝑘𝑈𝑘𝑉))
6 lssset.v . . . . . . . 8 𝑉 = (Base‘𝑊)
76basmex 12810 . . . . . . 7 (𝑘𝑉𝑊 ∈ V)
85, 7syl6 33 . . . . . 6 (𝑈𝑉 → (𝑘𝑈𝑊 ∈ V))
98exlimdv 1841 . . . . 5 (𝑈𝑉 → (∃𝑘 𝑘𝑈𝑊 ∈ V))
104, 9biimtrrid 153 . . . 4 (𝑈𝑉 → (∃𝑗 𝑗𝑈𝑊 ∈ V))
1110imp 124 . . 3 ((𝑈𝑉 ∧ ∃𝑗 𝑗𝑈) → 𝑊 ∈ V)
12113adant3 1019 . 2 ((𝑈𝑉 ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) → 𝑊 ∈ V)
13 lssset.f . . . . 5 𝐹 = (Scalar‘𝑊)
14 lssset.b . . . . 5 𝐵 = (Base‘𝐹)
15 lssset.p . . . . 5 + = (+g𝑊)
16 lssset.t . . . . 5 · = ( ·𝑠𝑊)
1713, 14, 6, 15, 16, 1lsssetm 14036 . . . 4 (𝑊 ∈ V → 𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})
1817eleq2d 2274 . . 3 (𝑊 ∈ V → (𝑈𝑆𝑈 ∈ {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)}))
19 basfn 12809 . . . . . . . 8 Base Fn V
20 funfvex 5587 . . . . . . . . 9 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
2120funfni 5370 . . . . . . . 8 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
2219, 21mpan 424 . . . . . . 7 (𝑊 ∈ V → (Base‘𝑊) ∈ V)
236, 22eqeltrid 2291 . . . . . 6 (𝑊 ∈ V → 𝑉 ∈ V)
24 elpw2g 4199 . . . . . 6 (𝑉 ∈ V → (𝑈 ∈ 𝒫 𝑉𝑈𝑉))
2523, 24syl 14 . . . . 5 (𝑊 ∈ V → (𝑈 ∈ 𝒫 𝑉𝑈𝑉))
2625anbi1d 465 . . . 4 (𝑊 ∈ V → ((𝑈 ∈ 𝒫 𝑉 ∧ (∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) ↔ (𝑈𝑉 ∧ (∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))))
27 eleq2 2268 . . . . . . 7 (𝑠 = 𝑈 → (𝑗𝑠𝑗𝑈))
2827exbidv 1847 . . . . . 6 (𝑠 = 𝑈 → (∃𝑗 𝑗𝑠 ↔ ∃𝑗 𝑗𝑈))
29 eleq2 2268 . . . . . . . . 9 (𝑠 = 𝑈 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
3029raleqbi1dv 2713 . . . . . . . 8 (𝑠 = 𝑈 → (∀𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
3130raleqbi1dv 2713 . . . . . . 7 (𝑠 = 𝑈 → (∀𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
3231ralbidv 2505 . . . . . 6 (𝑠 = 𝑈 → (∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
3328, 32anbi12d 473 . . . . 5 (𝑠 = 𝑈 → ((∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠) ↔ (∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
3433elrab 2928 . . . 4 (𝑈 ∈ {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)} ↔ (𝑈 ∈ 𝒫 𝑉 ∧ (∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
35 3anass 984 . . . 4 ((𝑈𝑉 ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) ↔ (𝑈𝑉 ∧ (∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
3626, 34, 353bitr4g 223 . . 3 (𝑊 ∈ V → (𝑈 ∈ {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)} ↔ (𝑈𝑉 ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
3718, 36bitrd 188 . 2 (𝑊 ∈ V → (𝑈𝑆 ↔ (𝑈𝑉 ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
382, 12, 37pm5.21nii 705 1 (𝑈𝑆 ↔ (𝑈𝑉 ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980   = wceq 1372  wex 1514  wcel 2175  wral 2483  {crab 2487  Vcvv 2771  wss 3165  𝒫 cpw 3615   Fn wfn 5263  cfv 5268  (class class class)co 5934  Basecbs 12751  +gcplusg 12828  Scalarcsca 12831   ·𝑠 cvsca 12832  LSubSpclss 14032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-iota 5229  df-fun 5270  df-fn 5271  df-fv 5276  df-ov 5937  df-inn 9019  df-ndx 12754  df-slot 12755  df-base 12757  df-lssm 14033
This theorem is referenced by:  islidlm  14159
  Copyright terms: Public domain W3C validator