Step | Hyp | Ref
| Expression |
1 | | lssset.f |
. . . 4
β’ πΉ = (Scalarβπ) |
2 | | lssset.b |
. . . 4
β’ π΅ = (BaseβπΉ) |
3 | | lssset.v |
. . . 4
β’ π = (Baseβπ) |
4 | | lssset.p |
. . . 4
β’ + =
(+gβπ) |
5 | | lssset.t |
. . . 4
β’ Β· = (
Β·π βπ) |
6 | | lssset.s |
. . . 4
β’ π = (LSubSpβπ) |
7 | 1, 2, 3, 4, 5, 6 | lsssetm 13449 |
. . 3
β’ (π β π β π = {π β π« π β£ (βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π )}) |
8 | 7 | eleq2d 2247 |
. 2
β’ (π β π β (π β π β π β {π β π« π β£ (βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π )})) |
9 | | basfn 12522 |
. . . . . . 7
β’ Base Fn
V |
10 | | elex 2750 |
. . . . . . 7
β’ (π β π β π β V) |
11 | | funfvex 5534 |
. . . . . . . 8
β’ ((Fun
Base β§ π β dom
Base) β (Baseβπ)
β V) |
12 | 11 | funfni 5318 |
. . . . . . 7
β’ ((Base Fn
V β§ π β V) β
(Baseβπ) β
V) |
13 | 9, 10, 12 | sylancr 414 |
. . . . . 6
β’ (π β π β (Baseβπ) β V) |
14 | 3, 13 | eqeltrid 2264 |
. . . . 5
β’ (π β π β π β V) |
15 | | elpw2g 4158 |
. . . . 5
β’ (π β V β (π β π« π β π β π)) |
16 | 14, 15 | syl 14 |
. . . 4
β’ (π β π β (π β π« π β π β π)) |
17 | 16 | anbi1d 465 |
. . 3
β’ (π β π β ((π β π« π β§ (βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π)) β (π β π β§ (βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π)))) |
18 | | eleq2 2241 |
. . . . . 6
β’ (π = π β (π β π β π β π)) |
19 | 18 | exbidv 1825 |
. . . . 5
β’ (π = π β (βπ π β π β βπ π β π)) |
20 | | eleq2 2241 |
. . . . . . . 8
β’ (π = π β (((π₯ Β· π) + π) β π β ((π₯ Β· π) + π) β π)) |
21 | 20 | raleqbi1dv 2681 |
. . . . . . 7
β’ (π = π β (βπ β π ((π₯ Β· π) + π) β π β βπ β π ((π₯ Β· π) + π) β π)) |
22 | 21 | raleqbi1dv 2681 |
. . . . . 6
β’ (π = π β (βπ β π βπ β π ((π₯ Β· π) + π) β π β βπ β π βπ β π ((π₯ Β· π) + π) β π)) |
23 | 22 | ralbidv 2477 |
. . . . 5
β’ (π = π β (βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π β βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π)) |
24 | 19, 23 | anbi12d 473 |
. . . 4
β’ (π = π β ((βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π ) β (βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π))) |
25 | 24 | elrab 2895 |
. . 3
β’ (π β {π β π« π β£ (βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π )} β (π β π« π β§ (βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π))) |
26 | | 3anass 982 |
. . 3
β’ ((π β π β§ βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π) β (π β π β§ (βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π))) |
27 | 17, 25, 26 | 3bitr4g 223 |
. 2
β’ (π β π β (π β {π β π« π β£ (βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π )} β (π β π β§ βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π))) |
28 | 8, 27 | bitrd 188 |
1
β’ (π β π β (π β π β (π β π β§ βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π))) |