Step | Hyp | Ref
| Expression |
1 | | lssset.s |
. . 3
⊢ 𝑆 = (LSubSp‘𝑊) |
2 | 1 | lssmex 13544 |
. 2
⊢ (𝑈 ∈ 𝑆 → 𝑊 ∈ V) |
3 | | eleq1w 2248 |
. . . . . 6
⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑈 ↔ 𝑗 ∈ 𝑈)) |
4 | 3 | cbvexv 1928 |
. . . . 5
⊢
(∃𝑘 𝑘 ∈ 𝑈 ↔ ∃𝑗 𝑗 ∈ 𝑈) |
5 | | ssel 3161 |
. . . . . . 7
⊢ (𝑈 ⊆ 𝑉 → (𝑘 ∈ 𝑈 → 𝑘 ∈ 𝑉)) |
6 | | lssset.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
7 | 6 | basmex 12535 |
. . . . . . 7
⊢ (𝑘 ∈ 𝑉 → 𝑊 ∈ V) |
8 | 5, 7 | syl6 33 |
. . . . . 6
⊢ (𝑈 ⊆ 𝑉 → (𝑘 ∈ 𝑈 → 𝑊 ∈ V)) |
9 | 8 | exlimdv 1829 |
. . . . 5
⊢ (𝑈 ⊆ 𝑉 → (∃𝑘 𝑘 ∈ 𝑈 → 𝑊 ∈ V)) |
10 | 4, 9 | biimtrrid 153 |
. . . 4
⊢ (𝑈 ⊆ 𝑉 → (∃𝑗 𝑗 ∈ 𝑈 → 𝑊 ∈ V)) |
11 | 10 | imp 124 |
. . 3
⊢ ((𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈) → 𝑊 ∈ V) |
12 | 11 | 3adant3 1018 |
. 2
⊢ ((𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) → 𝑊 ∈ V) |
13 | | lssset.f |
. . . . 5
⊢ 𝐹 = (Scalar‘𝑊) |
14 | | lssset.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐹) |
15 | | lssset.p |
. . . . 5
⊢ + =
(+g‘𝑊) |
16 | | lssset.t |
. . . . 5
⊢ · = (
·𝑠 ‘𝑊) |
17 | 13, 14, 6, 15, 16, 1 | lsssetm 13545 |
. . . 4
⊢ (𝑊 ∈ V → 𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)}) |
18 | 17 | eleq2d 2257 |
. . 3
⊢ (𝑊 ∈ V → (𝑈 ∈ 𝑆 ↔ 𝑈 ∈ {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})) |
19 | | basfn 12534 |
. . . . . . . 8
⊢ Base Fn
V |
20 | | funfvex 5544 |
. . . . . . . . 9
⊢ ((Fun
Base ∧ 𝑊 ∈ dom
Base) → (Base‘𝑊)
∈ V) |
21 | 20 | funfni 5328 |
. . . . . . . 8
⊢ ((Base Fn
V ∧ 𝑊 ∈ V) →
(Base‘𝑊) ∈
V) |
22 | 19, 21 | mpan 424 |
. . . . . . 7
⊢ (𝑊 ∈ V →
(Base‘𝑊) ∈
V) |
23 | 6, 22 | eqeltrid 2274 |
. . . . . 6
⊢ (𝑊 ∈ V → 𝑉 ∈ V) |
24 | | elpw2g 4168 |
. . . . . 6
⊢ (𝑉 ∈ V → (𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉)) |
25 | 23, 24 | syl 14 |
. . . . 5
⊢ (𝑊 ∈ V → (𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉)) |
26 | 25 | anbi1d 465 |
. . . 4
⊢ (𝑊 ∈ V → ((𝑈 ∈ 𝒫 𝑉 ∧ (∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) ↔ (𝑈 ⊆ 𝑉 ∧ (∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))) |
27 | | eleq2 2251 |
. . . . . . 7
⊢ (𝑠 = 𝑈 → (𝑗 ∈ 𝑠 ↔ 𝑗 ∈ 𝑈)) |
28 | 27 | exbidv 1835 |
. . . . . 6
⊢ (𝑠 = 𝑈 → (∃𝑗 𝑗 ∈ 𝑠 ↔ ∃𝑗 𝑗 ∈ 𝑈)) |
29 | | eleq2 2251 |
. . . . . . . . 9
⊢ (𝑠 = 𝑈 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
30 | 29 | raleqbi1dv 2691 |
. . . . . . . 8
⊢ (𝑠 = 𝑈 → (∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
31 | 30 | raleqbi1dv 2691 |
. . . . . . 7
⊢ (𝑠 = 𝑈 → (∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
32 | 31 | ralbidv 2487 |
. . . . . 6
⊢ (𝑠 = 𝑈 → (∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
33 | 28, 32 | anbi12d 473 |
. . . . 5
⊢ (𝑠 = 𝑈 → ((∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠) ↔ (∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
34 | 33 | elrab 2905 |
. . . 4
⊢ (𝑈 ∈ {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)} ↔ (𝑈 ∈ 𝒫 𝑉 ∧ (∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
35 | | 3anass 983 |
. . . 4
⊢ ((𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) ↔ (𝑈 ⊆ 𝑉 ∧ (∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
36 | 26, 34, 35 | 3bitr4g 223 |
. . 3
⊢ (𝑊 ∈ V → (𝑈 ∈ {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)} ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
37 | 18, 36 | bitrd 188 |
. 2
⊢ (𝑊 ∈ V → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
38 | 2, 12, 37 | pm5.21nii 705 |
1
⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |