![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zdvdsdc | GIF version |
Description: Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.) |
Ref | Expression |
---|---|
zdvdsdc | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ∥ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 527 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑀 ∈ ℤ) | |
2 | 1 | znegcld 9395 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → -𝑀 ∈ ℤ) |
3 | simpr 110 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑀 < 0) | |
4 | 1 | zred 9393 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑀 ∈ ℝ) |
5 | 4 | lt0neg1d 8490 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → (𝑀 < 0 ↔ 0 < -𝑀)) |
6 | 3, 5 | mpbid 147 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 0 < -𝑀) |
7 | elnnz 9281 | . . . . 5 ⊢ (-𝑀 ∈ ℕ ↔ (-𝑀 ∈ ℤ ∧ 0 < -𝑀)) | |
8 | 2, 6, 7 | sylanbrc 417 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → -𝑀 ∈ ℕ) |
9 | simplr 528 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑁 ∈ ℤ) | |
10 | dvdsdc 11823 | . . . 4 ⊢ ((-𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID -𝑀 ∥ 𝑁) | |
11 | 8, 9, 10 | syl2anc 411 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → DECID -𝑀 ∥ 𝑁) |
12 | negdvdsb 11832 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ -𝑀 ∥ 𝑁)) | |
13 | 12 | adantr 276 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → (𝑀 ∥ 𝑁 ↔ -𝑀 ∥ 𝑁)) |
14 | 13 | dcbid 839 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → (DECID 𝑀 ∥ 𝑁 ↔ DECID -𝑀 ∥ 𝑁)) |
15 | 11, 14 | mpbird 167 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → DECID 𝑀 ∥ 𝑁) |
16 | 0z 9282 | . . . . 5 ⊢ 0 ∈ ℤ | |
17 | zdceq 9346 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
18 | 16, 17 | mpan2 425 | . . . 4 ⊢ (𝑁 ∈ ℤ → DECID 𝑁 = 0) |
19 | 18 | ad2antlr 489 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → DECID 𝑁 = 0) |
20 | breq1 4021 | . . . . . 6 ⊢ (𝑀 = 0 → (𝑀 ∥ 𝑁 ↔ 0 ∥ 𝑁)) | |
21 | 20 | adantl 277 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 ∥ 𝑁 ↔ 0 ∥ 𝑁)) |
22 | 0dvds 11836 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 𝑁 = 0)) | |
23 | 22 | ad2antlr 489 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (0 ∥ 𝑁 ↔ 𝑁 = 0)) |
24 | 21, 23 | bitrd 188 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 ∥ 𝑁 ↔ 𝑁 = 0)) |
25 | 24 | dcbid 839 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (DECID 𝑀 ∥ 𝑁 ↔ DECID 𝑁 = 0)) |
26 | 19, 25 | mpbird 167 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → DECID 𝑀 ∥ 𝑁) |
27 | simpll 527 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 𝑀 ∈ ℤ) | |
28 | simpr 110 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 0 < 𝑀) | |
29 | elnnz 9281 | . . . 4 ⊢ (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀)) | |
30 | 27, 28, 29 | sylanbrc 417 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 𝑀 ∈ ℕ) |
31 | simplr 528 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 𝑁 ∈ ℤ) | |
32 | dvdsdc 11823 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ∥ 𝑁) | |
33 | 30, 31, 32 | syl2anc 411 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → DECID 𝑀 ∥ 𝑁) |
34 | ztri3or0 9313 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑀 < 0 ∨ 𝑀 = 0 ∨ 0 < 𝑀)) | |
35 | 34 | adantr 276 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 0 ∨ 𝑀 = 0 ∨ 0 < 𝑀)) |
36 | 15, 26, 33, 35 | mpjao3dan 1318 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ∥ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 ∨ w3o 979 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 0cc0 7829 < clt 8010 -cneg 8147 ℕcn 8937 ℤcz 9271 ∥ cdvds 11812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-mulrcl 7928 ax-addcom 7929 ax-mulcom 7930 ax-addass 7931 ax-mulass 7932 ax-distr 7933 ax-i2m1 7934 ax-0lt1 7935 ax-1rid 7936 ax-0id 7937 ax-rnegex 7938 ax-precex 7939 ax-cnre 7940 ax-pre-ltirr 7941 ax-pre-ltwlin 7942 ax-pre-lttrn 7943 ax-pre-apti 7944 ax-pre-ltadd 7945 ax-pre-mulgt0 7946 ax-pre-mulext 7947 ax-arch 7948 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-po 4311 df-iso 4312 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-pnf 8012 df-mnf 8013 df-xr 8014 df-ltxr 8015 df-le 8016 df-sub 8148 df-neg 8149 df-reap 8550 df-ap 8557 df-div 8648 df-inn 8938 df-n0 9195 df-z 9272 df-q 9638 df-rp 9672 df-fl 10288 df-mod 10341 df-dvds 11813 |
This theorem is referenced by: lcmval 12081 lcmcllem 12085 lcmledvds 12088 phiprmpw 12240 pclemdc 12306 pc2dvds 12347 unennn 12416 |
Copyright terms: Public domain | W3C validator |