ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdvdsdc GIF version

Theorem zdvdsdc 11752
Description: Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.)
Assertion
Ref Expression
zdvdsdc ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)

Proof of Theorem zdvdsdc
StepHypRef Expression
1 simpll 519 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑀 ∈ ℤ)
21znegcld 9315 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → -𝑀 ∈ ℤ)
3 simpr 109 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑀 < 0)
41zred 9313 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑀 ∈ ℝ)
54lt0neg1d 8413 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → (𝑀 < 0 ↔ 0 < -𝑀))
63, 5mpbid 146 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 0 < -𝑀)
7 elnnz 9201 . . . . 5 (-𝑀 ∈ ℕ ↔ (-𝑀 ∈ ℤ ∧ 0 < -𝑀))
82, 6, 7sylanbrc 414 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → -𝑀 ∈ ℕ)
9 simplr 520 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑁 ∈ ℤ)
10 dvdsdc 11738 . . . 4 ((-𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID -𝑀𝑁)
118, 9, 10syl2anc 409 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → DECID -𝑀𝑁)
12 negdvdsb 11747 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ -𝑀𝑁))
1312adantr 274 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → (𝑀𝑁 ↔ -𝑀𝑁))
1413dcbid 828 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → (DECID 𝑀𝑁DECID -𝑀𝑁))
1511, 14mpbird 166 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → DECID 𝑀𝑁)
16 0z 9202 . . . . 5 0 ∈ ℤ
17 zdceq 9266 . . . . 5 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
1816, 17mpan2 422 . . . 4 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
1918ad2antlr 481 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → DECID 𝑁 = 0)
20 breq1 3985 . . . . . 6 (𝑀 = 0 → (𝑀𝑁 ↔ 0 ∥ 𝑁))
2120adantl 275 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝑁 ↔ 0 ∥ 𝑁))
22 0dvds 11751 . . . . . 6 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
2322ad2antlr 481 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (0 ∥ 𝑁𝑁 = 0))
2421, 23bitrd 187 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝑁𝑁 = 0))
2524dcbid 828 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (DECID 𝑀𝑁DECID 𝑁 = 0))
2619, 25mpbird 166 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → DECID 𝑀𝑁)
27 simpll 519 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 𝑀 ∈ ℤ)
28 simpr 109 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 0 < 𝑀)
29 elnnz 9201 . . . 4 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
3027, 28, 29sylanbrc 414 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 𝑀 ∈ ℕ)
31 simplr 520 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 𝑁 ∈ ℤ)
32 dvdsdc 11738 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
3330, 31, 32syl2anc 409 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → DECID 𝑀𝑁)
34 ztri3or0 9233 . . 3 (𝑀 ∈ ℤ → (𝑀 < 0 ∨ 𝑀 = 0 ∨ 0 < 𝑀))
3534adantr 274 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 0 ∨ 𝑀 = 0 ∨ 0 < 𝑀))
3615, 26, 33, 35mpjao3dan 1297 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 824  w3o 967   = wceq 1343  wcel 2136   class class class wbr 3982  0cc0 7753   < clt 7933  -cneg 8070  cn 8857  cz 9191  cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-q 9558  df-rp 9590  df-fl 10205  df-mod 10258  df-dvds 11728
This theorem is referenced by:  lcmval  11995  lcmcllem  11999  lcmledvds  12002  phiprmpw  12154  pclemdc  12220  pc2dvds  12261  unennn  12330
  Copyright terms: Public domain W3C validator