ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdvdsdc GIF version

Theorem zdvdsdc 12289
Description: Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.)
Assertion
Ref Expression
zdvdsdc ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)

Proof of Theorem zdvdsdc
StepHypRef Expression
1 simpll 527 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑀 ∈ ℤ)
21znegcld 9539 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → -𝑀 ∈ ℤ)
3 simpr 110 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑀 < 0)
41zred 9537 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑀 ∈ ℝ)
54lt0neg1d 8630 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → (𝑀 < 0 ↔ 0 < -𝑀))
63, 5mpbid 147 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 0 < -𝑀)
7 elnnz 9424 . . . . 5 (-𝑀 ∈ ℕ ↔ (-𝑀 ∈ ℤ ∧ 0 < -𝑀))
82, 6, 7sylanbrc 417 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → -𝑀 ∈ ℕ)
9 simplr 528 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑁 ∈ ℤ)
10 dvdsdc 12275 . . . 4 ((-𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID -𝑀𝑁)
118, 9, 10syl2anc 411 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → DECID -𝑀𝑁)
12 negdvdsb 12284 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ -𝑀𝑁))
1312adantr 276 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → (𝑀𝑁 ↔ -𝑀𝑁))
1413dcbid 842 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → (DECID 𝑀𝑁DECID -𝑀𝑁))
1511, 14mpbird 167 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → DECID 𝑀𝑁)
16 0z 9425 . . . . 5 0 ∈ ℤ
17 zdceq 9490 . . . . 5 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
1816, 17mpan2 425 . . . 4 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
1918ad2antlr 489 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → DECID 𝑁 = 0)
20 breq1 4065 . . . . . 6 (𝑀 = 0 → (𝑀𝑁 ↔ 0 ∥ 𝑁))
2120adantl 277 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝑁 ↔ 0 ∥ 𝑁))
22 0dvds 12288 . . . . . 6 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
2322ad2antlr 489 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (0 ∥ 𝑁𝑁 = 0))
2421, 23bitrd 188 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝑁𝑁 = 0))
2524dcbid 842 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (DECID 𝑀𝑁DECID 𝑁 = 0))
2619, 25mpbird 167 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → DECID 𝑀𝑁)
27 simpll 527 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 𝑀 ∈ ℤ)
28 simpr 110 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 0 < 𝑀)
29 elnnz 9424 . . . 4 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
3027, 28, 29sylanbrc 417 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 𝑀 ∈ ℕ)
31 simplr 528 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 𝑁 ∈ ℤ)
32 dvdsdc 12275 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
3330, 31, 32syl2anc 411 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → DECID 𝑀𝑁)
34 ztri3or0 9456 . . 3 (𝑀 ∈ ℤ → (𝑀 < 0 ∨ 𝑀 = 0 ∨ 0 < 𝑀))
3534adantr 276 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 0 ∨ 𝑀 = 0 ∨ 0 < 𝑀))
3615, 26, 33, 35mpjao3dan 1322 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 838  w3o 982   = wceq 1375  wcel 2180   class class class wbr 4062  0cc0 7967   < clt 8149  -cneg 8286  cn 9078  cz 9414  cdvds 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-n0 9338  df-z 9415  df-q 9783  df-rp 9818  df-fl 10457  df-mod 10512  df-dvds 12265
This theorem is referenced by:  lcmval  12551  lcmcllem  12555  lcmledvds  12558  phiprmpw  12710  pclemdc  12777  pc2dvds  12819  unennn  12934
  Copyright terms: Public domain W3C validator