ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdvdsdc GIF version

Theorem zdvdsdc 11994
Description: Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.)
Assertion
Ref Expression
zdvdsdc ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)

Proof of Theorem zdvdsdc
StepHypRef Expression
1 simpll 527 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑀 ∈ ℤ)
21znegcld 9467 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → -𝑀 ∈ ℤ)
3 simpr 110 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑀 < 0)
41zred 9465 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑀 ∈ ℝ)
54lt0neg1d 8559 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → (𝑀 < 0 ↔ 0 < -𝑀))
63, 5mpbid 147 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 0 < -𝑀)
7 elnnz 9353 . . . . 5 (-𝑀 ∈ ℕ ↔ (-𝑀 ∈ ℤ ∧ 0 < -𝑀))
82, 6, 7sylanbrc 417 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → -𝑀 ∈ ℕ)
9 simplr 528 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑁 ∈ ℤ)
10 dvdsdc 11980 . . . 4 ((-𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID -𝑀𝑁)
118, 9, 10syl2anc 411 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → DECID -𝑀𝑁)
12 negdvdsb 11989 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ -𝑀𝑁))
1312adantr 276 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → (𝑀𝑁 ↔ -𝑀𝑁))
1413dcbid 839 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → (DECID 𝑀𝑁DECID -𝑀𝑁))
1511, 14mpbird 167 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → DECID 𝑀𝑁)
16 0z 9354 . . . . 5 0 ∈ ℤ
17 zdceq 9418 . . . . 5 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
1816, 17mpan2 425 . . . 4 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
1918ad2antlr 489 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → DECID 𝑁 = 0)
20 breq1 4037 . . . . . 6 (𝑀 = 0 → (𝑀𝑁 ↔ 0 ∥ 𝑁))
2120adantl 277 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝑁 ↔ 0 ∥ 𝑁))
22 0dvds 11993 . . . . . 6 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
2322ad2antlr 489 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (0 ∥ 𝑁𝑁 = 0))
2421, 23bitrd 188 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝑁𝑁 = 0))
2524dcbid 839 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (DECID 𝑀𝑁DECID 𝑁 = 0))
2619, 25mpbird 167 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → DECID 𝑀𝑁)
27 simpll 527 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 𝑀 ∈ ℤ)
28 simpr 110 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 0 < 𝑀)
29 elnnz 9353 . . . 4 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
3027, 28, 29sylanbrc 417 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 𝑀 ∈ ℕ)
31 simplr 528 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 𝑁 ∈ ℤ)
32 dvdsdc 11980 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
3330, 31, 32syl2anc 411 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → DECID 𝑀𝑁)
34 ztri3or0 9385 . . 3 (𝑀 ∈ ℤ → (𝑀 < 0 ∨ 𝑀 = 0 ∨ 0 < 𝑀))
3534adantr 276 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 0 ∨ 𝑀 = 0 ∨ 0 < 𝑀))
3615, 26, 33, 35mpjao3dan 1318 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835  w3o 979   = wceq 1364  wcel 2167   class class class wbr 4034  0cc0 7896   < clt 8078  -cneg 8215  cn 9007  cz 9343  cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432  df-dvds 11970
This theorem is referenced by:  lcmval  12256  lcmcllem  12260  lcmledvds  12263  phiprmpw  12415  pclemdc  12482  pc2dvds  12524  unennn  12639
  Copyright terms: Public domain W3C validator