![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zdvdsdc | GIF version |
Description: Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.) |
Ref | Expression |
---|---|
zdvdsdc | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ∥ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 527 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑀 ∈ ℤ) | |
2 | 1 | znegcld 9350 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → -𝑀 ∈ ℤ) |
3 | simpr 110 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑀 < 0) | |
4 | 1 | zred 9348 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑀 ∈ ℝ) |
5 | 4 | lt0neg1d 8446 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → (𝑀 < 0 ↔ 0 < -𝑀)) |
6 | 3, 5 | mpbid 147 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 0 < -𝑀) |
7 | elnnz 9236 | . . . . 5 ⊢ (-𝑀 ∈ ℕ ↔ (-𝑀 ∈ ℤ ∧ 0 < -𝑀)) | |
8 | 2, 6, 7 | sylanbrc 417 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → -𝑀 ∈ ℕ) |
9 | simplr 528 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → 𝑁 ∈ ℤ) | |
10 | dvdsdc 11773 | . . . 4 ⊢ ((-𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID -𝑀 ∥ 𝑁) | |
11 | 8, 9, 10 | syl2anc 411 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → DECID -𝑀 ∥ 𝑁) |
12 | negdvdsb 11782 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ -𝑀 ∥ 𝑁)) | |
13 | 12 | adantr 276 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → (𝑀 ∥ 𝑁 ↔ -𝑀 ∥ 𝑁)) |
14 | 13 | dcbid 838 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → (DECID 𝑀 ∥ 𝑁 ↔ DECID -𝑀 ∥ 𝑁)) |
15 | 11, 14 | mpbird 167 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 < 0) → DECID 𝑀 ∥ 𝑁) |
16 | 0z 9237 | . . . . 5 ⊢ 0 ∈ ℤ | |
17 | zdceq 9301 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
18 | 16, 17 | mpan2 425 | . . . 4 ⊢ (𝑁 ∈ ℤ → DECID 𝑁 = 0) |
19 | 18 | ad2antlr 489 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → DECID 𝑁 = 0) |
20 | breq1 4001 | . . . . . 6 ⊢ (𝑀 = 0 → (𝑀 ∥ 𝑁 ↔ 0 ∥ 𝑁)) | |
21 | 20 | adantl 277 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 ∥ 𝑁 ↔ 0 ∥ 𝑁)) |
22 | 0dvds 11786 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 𝑁 = 0)) | |
23 | 22 | ad2antlr 489 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (0 ∥ 𝑁 ↔ 𝑁 = 0)) |
24 | 21, 23 | bitrd 188 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 ∥ 𝑁 ↔ 𝑁 = 0)) |
25 | 24 | dcbid 838 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (DECID 𝑀 ∥ 𝑁 ↔ DECID 𝑁 = 0)) |
26 | 19, 25 | mpbird 167 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → DECID 𝑀 ∥ 𝑁) |
27 | simpll 527 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 𝑀 ∈ ℤ) | |
28 | simpr 110 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 0 < 𝑀) | |
29 | elnnz 9236 | . . . 4 ⊢ (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀)) | |
30 | 27, 28, 29 | sylanbrc 417 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 𝑀 ∈ ℕ) |
31 | simplr 528 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → 𝑁 ∈ ℤ) | |
32 | dvdsdc 11773 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ∥ 𝑁) | |
33 | 30, 31, 32 | syl2anc 411 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑀) → DECID 𝑀 ∥ 𝑁) |
34 | ztri3or0 9268 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑀 < 0 ∨ 𝑀 = 0 ∨ 0 < 𝑀)) | |
35 | 34 | adantr 276 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 0 ∨ 𝑀 = 0 ∨ 0 < 𝑀)) |
36 | 15, 26, 33, 35 | mpjao3dan 1307 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ∥ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 834 ∨ w3o 977 = wceq 1353 ∈ wcel 2146 class class class wbr 3998 0cc0 7786 < clt 7966 -cneg 8103 ℕcn 8892 ℤcz 9226 ∥ cdvds 11762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8603 df-inn 8893 df-n0 9150 df-z 9227 df-q 9593 df-rp 9625 df-fl 10240 df-mod 10293 df-dvds 11763 |
This theorem is referenced by: lcmval 12030 lcmcllem 12034 lcmledvds 12037 phiprmpw 12189 pclemdc 12255 pc2dvds 12296 unennn 12365 |
Copyright terms: Public domain | W3C validator |