| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemnkj | GIF version | ||
| Description: Lemma for caucvgprpr 7899. Part of disjointness. (Contributed by Jim Kingdon, 20-Jan-2021.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f | ⊢ (𝜑 → 𝐹:N⟶P) |
| caucvgprpr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) |
| caucvgprprlemnkj.k | ⊢ (𝜑 → 𝐾 ∈ N) |
| caucvgprprlemnkj.j | ⊢ (𝜑 → 𝐽 ∈ N) |
| caucvgprprlemnkj.s | ⊢ (𝜑 → 𝑆 ∈ Q) |
| Ref | Expression |
|---|---|
| caucvgprprlemnkj | ⊢ (𝜑 → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprpr.f | . . 3 ⊢ (𝜑 → 𝐹:N⟶P) | |
| 2 | caucvgprpr.cau | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) | |
| 3 | caucvgprprlemnkj.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ N) | |
| 4 | caucvgprprlemnkj.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ N) | |
| 5 | caucvgprprlemnkj.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ Q) | |
| 6 | 1, 2, 3, 4, 5 | caucvgprprlemnkltj 7876 | . 2 ⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) |
| 7 | 1, 2, 3, 4, 5 | caucvgprprlemnkeqj 7877 | . 2 ⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) |
| 8 | 1, 2, 3, 4, 5 | caucvgprprlemnjltk 7878 | . 2 ⊢ ((𝜑 ∧ 𝐽 <N 𝐾) → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) |
| 9 | pitri3or 7509 | . . 3 ⊢ ((𝐾 ∈ N ∧ 𝐽 ∈ N) → (𝐾 <N 𝐽 ∨ 𝐾 = 𝐽 ∨ 𝐽 <N 𝐾)) | |
| 10 | 3, 4, 9 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐾 <N 𝐽 ∨ 𝐾 = 𝐽 ∨ 𝐽 <N 𝐾)) |
| 11 | 6, 7, 8, 10 | mpjao3dan 1341 | 1 ⊢ (𝜑 → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 〈cop 3669 class class class wbr 4083 ⟶wf 5314 ‘cfv 5318 (class class class)co 6001 1oc1o 6555 [cec 6678 Ncnpi 7459 <N clti 7462 ~Q ceq 7466 Qcnq 7467 +Q cplq 7469 *Qcrq 7471 <Q cltq 7472 Pcnp 7478 +P cpp 7480 <P cltp 7482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-2o 6563 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-enq0 7611 df-nq0 7612 df-0nq0 7613 df-plq0 7614 df-mq0 7615 df-inp 7653 df-iplp 7655 df-iltp 7657 |
| This theorem is referenced by: caucvgprprlemdisj 7889 |
| Copyright terms: Public domain | W3C validator |