Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > trilpolemres | GIF version |
Description: Lemma for trilpo 13585. The result. (Contributed by Jim Kingdon, 23-Aug-2023.) |
Ref | Expression |
---|---|
trilpolemgt1.f | ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) |
trilpolemgt1.a | ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) |
trilpolemres.a | ⊢ (𝜑 → (𝐴 < 1 ∨ 𝐴 = 1 ∨ 1 < 𝐴)) |
Ref | Expression |
---|---|
trilpolemres | ⊢ (𝜑 → (∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0 ∨ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trilpolemgt1.f | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) | |
2 | 1 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 1) → 𝐹:ℕ⟶{0, 1}) |
3 | trilpolemgt1.a | . . . 4 ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) | |
4 | simpr 109 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 1) → 𝐴 < 1) | |
5 | 2, 3, 4 | trilpolemlt1 13583 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 1) → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0) |
6 | 5 | orcd 723 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 1) → (∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0 ∨ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) |
7 | 1 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 1) → 𝐹:ℕ⟶{0, 1}) |
8 | simpr 109 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 1) → 𝐴 = 1) | |
9 | 7, 3, 8 | trilpolemeq1 13582 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 1) → ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) |
10 | 9 | olcd 724 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 1) → (∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0 ∨ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) |
11 | 1, 3 | trilpolemgt1 13581 | . . . 4 ⊢ (𝜑 → ¬ 1 < 𝐴) |
12 | 11 | pm2.21d 609 | . . 3 ⊢ (𝜑 → (1 < 𝐴 → (∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0 ∨ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1))) |
13 | 12 | imp 123 | . 2 ⊢ ((𝜑 ∧ 1 < 𝐴) → (∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0 ∨ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) |
14 | trilpolemres.a | . 2 ⊢ (𝜑 → (𝐴 < 1 ∨ 𝐴 = 1 ∨ 1 < 𝐴)) | |
15 | 6, 10, 13, 14 | mpjao3dan 1289 | 1 ⊢ (𝜑 → (∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0 ∨ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 ∨ w3o 962 = wceq 1335 ∀wral 2435 ∃wrex 2436 {cpr 3561 class class class wbr 3965 ⟶wf 5165 ‘cfv 5169 (class class class)co 5821 0cc0 7726 1c1 7727 · cmul 7731 < clt 7906 / cdiv 8539 ℕcn 8827 2c2 8878 ↑cexp 10411 Σcsu 11243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-precex 7836 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 ax-pre-mulext 7844 ax-arch 7845 ax-caucvg 7846 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-isom 5178 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-irdg 6314 df-frec 6335 df-1o 6360 df-2o 6361 df-oadd 6364 df-er 6477 df-map 6592 df-en 6683 df-dom 6684 df-fin 6685 df-omni 7072 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-reap 8444 df-ap 8451 df-div 8540 df-inn 8828 df-2 8886 df-3 8887 df-4 8888 df-n0 9085 df-z 9162 df-uz 9434 df-q 9522 df-rp 9554 df-ico 9791 df-fz 9906 df-fzo 10035 df-seqfrec 10338 df-exp 10412 df-ihash 10643 df-cj 10735 df-re 10736 df-im 10737 df-rsqrt 10891 df-abs 10892 df-clim 11169 df-sumdc 11244 |
This theorem is referenced by: trilpo 13585 |
Copyright terms: Public domain | W3C validator |