Proof of Theorem xleadd1a
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simplrr 536 | 
. . . . . . 7
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | 
| 2 |   | simpr 110 | 
. . . . . . 7
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | 
| 3 |   | simplrl 535 | 
. . . . . . 7
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → 𝐶 ∈ ℝ) | 
| 4 |   | simpllr 534 | 
. . . . . . 7
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ 𝐵) | 
| 5 | 1, 2, 3, 4 | leadd1dd 8586 | 
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐶) ≤ (𝐵 + 𝐶)) | 
| 6 | 1, 3 | rexaddd 9929 | 
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐶) = (𝐴 + 𝐶)) | 
| 7 | 2, 3 | rexaddd 9929 | 
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶)) | 
| 8 | 5, 6, 7 | 3brtr4d 4065 | 
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
| 9 |   | simpl1 1002 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈
ℝ*) | 
| 10 |   | simpl3 1004 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → 𝐶 ∈
ℝ*) | 
| 11 |   | xaddcl 9935 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝐴 +𝑒 𝐶) ∈
ℝ*) | 
| 12 | 9, 10, 11 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐴 +𝑒 𝐶) ∈
ℝ*) | 
| 13 | 12 | ad2antrr 488 | 
. . . . . . 7
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) ∈
ℝ*) | 
| 14 |   | pnfge 9864 | 
. . . . . . 7
⊢ ((𝐴 +𝑒 𝐶) ∈ ℝ*
→ (𝐴
+𝑒 𝐶)
≤ +∞) | 
| 15 | 13, 14 | syl 14 | 
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) ≤ +∞) | 
| 16 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝐵 = +∞ → (𝐵 +𝑒 𝐶) = (+∞
+𝑒 𝐶)) | 
| 17 |   | rexr 8072 | 
. . . . . . . . 9
⊢ (𝐶 ∈ ℝ → 𝐶 ∈
ℝ*) | 
| 18 |   | renemnf 8075 | 
. . . . . . . . 9
⊢ (𝐶 ∈ ℝ → 𝐶 ≠ -∞) | 
| 19 |   | xaddpnf2 9922 | 
. . . . . . . . 9
⊢ ((𝐶 ∈ ℝ*
∧ 𝐶 ≠ -∞)
→ (+∞ +𝑒 𝐶) = +∞) | 
| 20 | 17, 18, 19 | syl2anc 411 | 
. . . . . . . 8
⊢ (𝐶 ∈ ℝ → (+∞
+𝑒 𝐶) =
+∞) | 
| 21 | 20 | ad2antrl 490 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (+∞
+𝑒 𝐶) =
+∞) | 
| 22 | 16, 21 | sylan9eqr 2251 | 
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = +∞) | 
| 23 | 15, 22 | breqtrrd 4061 | 
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
| 24 | 12 | adantr 276 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ∈
ℝ*) | 
| 25 | 24 | xrleidd 9876 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶)) | 
| 26 |   | simplr 528 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 = -∞) → 𝐴 ≤ 𝐵) | 
| 27 |   | simpr 110 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 = -∞) → 𝐵 = -∞) | 
| 28 | 9 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 = -∞) → 𝐴 ∈
ℝ*) | 
| 29 |   | mnfle 9867 | 
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ*
→ -∞ ≤ 𝐴) | 
| 30 | 28, 29 | syl 14 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 = -∞) → -∞ ≤ 𝐴) | 
| 31 | 27, 30 | eqbrtrd 4055 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 = -∞) → 𝐵 ≤ 𝐴) | 
| 32 |   | simpl2 1003 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈
ℝ*) | 
| 33 |   | xrletri3 9879 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | 
| 34 | 9, 32, 33 | syl2anc 411 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | 
| 35 | 34 | adantr 276 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 = -∞) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | 
| 36 | 26, 31, 35 | mpbir2and 946 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 = -∞) → 𝐴 = 𝐵) | 
| 37 | 36 | oveq1d 5937 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) = (𝐵 +𝑒 𝐶)) | 
| 38 | 25, 37 | breqtrd 4059 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
| 39 | 38 | adantlr 477 | 
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
| 40 |   | elxr 9851 | 
. . . . . . 7
⊢ (𝐵 ∈ ℝ*
↔ (𝐵 ∈ ℝ
∨ 𝐵 = +∞ ∨
𝐵 =
-∞)) | 
| 41 | 32, 40 | sylib 122 | 
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) | 
| 42 | 41 | adantr 276 | 
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) | 
| 43 | 8, 23, 39, 42 | mpjao3dan 1318 | 
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
| 44 | 43 | anassrs 400 | 
. . 3
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
| 45 | 12 | adantr 276 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ∈
ℝ*) | 
| 46 | 45 | xrleidd 9876 | 
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶)) | 
| 47 |   | simplr 528 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐴 = +∞) → 𝐴 ≤ 𝐵) | 
| 48 |   | pnfge 9864 | 
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ*
→ 𝐵 ≤
+∞) | 
| 49 | 32, 48 | syl 14 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → 𝐵 ≤ +∞) | 
| 50 | 49 | adantr 276 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐴 = +∞) → 𝐵 ≤ +∞) | 
| 51 |   | simpr 110 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐴 = +∞) → 𝐴 = +∞) | 
| 52 | 50, 51 | breqtrrd 4061 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐴 = +∞) → 𝐵 ≤ 𝐴) | 
| 53 | 34 | adantr 276 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐴 = +∞) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | 
| 54 | 47, 52, 53 | mpbir2and 946 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐴 = +∞) → 𝐴 = 𝐵) | 
| 55 | 54 | oveq1d 5937 | 
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) = (𝐵 +𝑒 𝐶)) | 
| 56 | 46, 55 | breqtrd 4059 | 
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
| 57 | 56 | adantlr 477 | 
. . 3
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
| 58 |   | oveq1 5929 | 
. . . . 5
⊢ (𝐴 = -∞ → (𝐴 +𝑒 𝐶) = (-∞
+𝑒 𝐶)) | 
| 59 |   | renepnf 8074 | 
. . . . . . 7
⊢ (𝐶 ∈ ℝ → 𝐶 ≠ +∞) | 
| 60 |   | xaddmnf2 9924 | 
. . . . . . 7
⊢ ((𝐶 ∈ ℝ*
∧ 𝐶 ≠ +∞)
→ (-∞ +𝑒 𝐶) = -∞) | 
| 61 | 17, 59, 60 | syl2anc 411 | 
. . . . . 6
⊢ (𝐶 ∈ ℝ → (-∞
+𝑒 𝐶) =
-∞) | 
| 62 | 61 | adantl 277 | 
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ ℝ) → (-∞
+𝑒 𝐶) =
-∞) | 
| 63 | 58, 62 | sylan9eqr 2251 | 
. . . 4
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐶) = -∞) | 
| 64 |   | xaddcl 9935 | 
. . . . . . 7
⊢ ((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝐵 +𝑒 𝐶) ∈
ℝ*) | 
| 65 | 32, 10, 64 | syl2anc 411 | 
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐵 +𝑒 𝐶) ∈
ℝ*) | 
| 66 | 65 | ad2antrr 488 | 
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐵 +𝑒 𝐶) ∈
ℝ*) | 
| 67 |   | mnfle 9867 | 
. . . . 5
⊢ ((𝐵 +𝑒 𝐶) ∈ ℝ*
→ -∞ ≤ (𝐵
+𝑒 𝐶)) | 
| 68 | 66, 67 | syl 14 | 
. . . 4
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → -∞ ≤ (𝐵 +𝑒 𝐶)) | 
| 69 | 63, 68 | eqbrtrd 4055 | 
. . 3
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
| 70 |   | elxr 9851 | 
. . . . 5
⊢ (𝐴 ∈ ℝ*
↔ (𝐴 ∈ ℝ
∨ 𝐴 = +∞ ∨
𝐴 =
-∞)) | 
| 71 | 9, 70 | sylib 122 | 
. . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | 
| 72 | 71 | adantr 276 | 
. . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | 
| 73 | 44, 57, 69, 72 | mpjao3dan 1318 | 
. 2
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
| 74 | 38 | adantlr 477 | 
. . 3
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
| 75 | 12 | ad2antrr 488 | 
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐴 +𝑒 𝐶) ∈
ℝ*) | 
| 76 | 75, 14 | syl 14 | 
. . . 4
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐴 +𝑒 𝐶) ≤ +∞) | 
| 77 |   | simplr 528 | 
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → 𝐶 = +∞) | 
| 78 | 77 | oveq2d 5938 | 
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐵 +𝑒 𝐶) = (𝐵 +𝑒
+∞)) | 
| 79 | 32 | adantr 276 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = +∞) → 𝐵 ∈
ℝ*) | 
| 80 |   | xaddpnf1 9921 | 
. . . . . 6
⊢ ((𝐵 ∈ ℝ*
∧ 𝐵 ≠ -∞)
→ (𝐵
+𝑒 +∞) = +∞) | 
| 81 | 79, 80 | sylan 283 | 
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) =
+∞) | 
| 82 | 78, 81 | eqtrd 2229 | 
. . . 4
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐵 +𝑒 𝐶) = +∞) | 
| 83 | 76, 82 | breqtrrd 4061 | 
. . 3
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
| 84 |   | xrmnfdc 9918 | 
. . . . . 6
⊢ (𝐵 ∈ ℝ*
→ DECID 𝐵 = -∞) | 
| 85 |   | exmiddc 837 | 
. . . . . 6
⊢
(DECID 𝐵 = -∞ → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞)) | 
| 86 | 84, 85 | syl 14 | 
. . . . 5
⊢ (𝐵 ∈ ℝ*
→ (𝐵 = -∞ ∨
¬ 𝐵 =
-∞)) | 
| 87 |   | df-ne 2368 | 
. . . . . 6
⊢ (𝐵 ≠ -∞ ↔ ¬
𝐵 =
-∞) | 
| 88 | 87 | orbi2i 763 | 
. . . . 5
⊢ ((𝐵 = -∞ ∨ 𝐵 ≠ -∞) ↔ (𝐵 = -∞ ∨ ¬ 𝐵 = -∞)) | 
| 89 | 86, 88 | sylibr 134 | 
. . . 4
⊢ (𝐵 ∈ ℝ*
→ (𝐵 = -∞ ∨
𝐵 ≠
-∞)) | 
| 90 | 79, 89 | syl 14 | 
. . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = +∞) → (𝐵 = -∞ ∨ 𝐵 ≠ -∞)) | 
| 91 | 74, 83, 90 | mpjaodan 799 | 
. 2
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
| 92 | 56 | adantlr 477 | 
. . 3
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
| 93 |   | simplr 528 | 
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → 𝐶 = -∞) | 
| 94 | 93 | oveq2d 5938 | 
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 𝐶) = (𝐴 +𝑒
-∞)) | 
| 95 | 9 | adantr 276 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = -∞) → 𝐴 ∈
ℝ*) | 
| 96 |   | xaddmnf1 9923 | 
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ +∞)
→ (𝐴
+𝑒 -∞) = -∞) | 
| 97 | 95, 96 | sylan 283 | 
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) =
-∞) | 
| 98 | 94, 97 | eqtrd 2229 | 
. . . 4
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 𝐶) = -∞) | 
| 99 | 65 | ad2antrr 488 | 
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐵 +𝑒 𝐶) ∈
ℝ*) | 
| 100 | 99, 67 | syl 14 | 
. . . 4
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → -∞ ≤ (𝐵 +𝑒 𝐶)) | 
| 101 | 98, 100 | eqbrtrd 4055 | 
. . 3
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
| 102 |   | xrpnfdc 9917 | 
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ DECID 𝐴 = +∞) | 
| 103 |   | exmiddc 837 | 
. . . . . 6
⊢
(DECID 𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) | 
| 104 | 102, 103 | syl 14 | 
. . . . 5
⊢ (𝐴 ∈ ℝ*
→ (𝐴 = +∞ ∨
¬ 𝐴 =
+∞)) | 
| 105 |   | df-ne 2368 | 
. . . . . 6
⊢ (𝐴 ≠ +∞ ↔ ¬
𝐴 =
+∞) | 
| 106 | 105 | orbi2i 763 | 
. . . . 5
⊢ ((𝐴 = +∞ ∨ 𝐴 ≠ +∞) ↔ (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) | 
| 107 | 104, 106 | sylibr 134 | 
. . . 4
⊢ (𝐴 ∈ ℝ*
→ (𝐴 = +∞ ∨
𝐴 ≠
+∞)) | 
| 108 | 95, 107 | syl 14 | 
. . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = -∞) → (𝐴 = +∞ ∨ 𝐴 ≠ +∞)) | 
| 109 | 92, 101, 108 | mpjaodan 799 | 
. 2
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
| 110 |   | elxr 9851 | 
. . 3
⊢ (𝐶 ∈ ℝ*
↔ (𝐶 ∈ ℝ
∨ 𝐶 = +∞ ∨
𝐶 =
-∞)) | 
| 111 | 10, 110 | sylib 122 | 
. 2
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞)) | 
| 112 | 73, 91, 109, 111 | mpjao3dan 1318 | 
1
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) |