ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xleadd1a GIF version

Theorem xleadd1a 9497
Description: Extended real version of leadd1 8059; note that the converse implication is not true, unlike the real version (for example 0 < 1 but (1 +𝑒 +∞) ≤ (0 +𝑒 +∞)). (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xleadd1a (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))

Proof of Theorem xleadd1a
StepHypRef Expression
1 simplrr 506 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2 simpr 109 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
3 simplrl 505 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → 𝐶 ∈ ℝ)
4 simpllr 504 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → 𝐴𝐵)
51, 2, 3, 4leadd1dd 8187 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐶) ≤ (𝐵 + 𝐶))
61, 3rexaddd 9478 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐶) = (𝐴 + 𝐶))
72, 3rexaddd 9478 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
85, 6, 73brtr4d 3905 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
9 simpl1 952 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴 ∈ ℝ*)
10 simpl3 954 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐶 ∈ ℝ*)
11 xaddcl 9484 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
129, 10, 11syl2anc 406 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
1312ad2antrr 475 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
14 pnfge 9416 . . . . . . 7 ((𝐴 +𝑒 𝐶) ∈ ℝ* → (𝐴 +𝑒 𝐶) ≤ +∞)
1513, 14syl 14 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) ≤ +∞)
16 oveq1 5713 . . . . . . 7 (𝐵 = +∞ → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 𝐶))
17 rexr 7683 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
18 renemnf 7686 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ≠ -∞)
19 xaddpnf2 9471 . . . . . . . . 9 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (+∞ +𝑒 𝐶) = +∞)
2017, 18, 19syl2anc 406 . . . . . . . 8 (𝐶 ∈ ℝ → (+∞ +𝑒 𝐶) = +∞)
2120ad2antrl 477 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (+∞ +𝑒 𝐶) = +∞)
2216, 21sylan9eqr 2154 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
2315, 22breqtrrd 3901 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
2412adantr 272 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
2524xrleidd 9428 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶))
26 simplr 500 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → 𝐴𝐵)
27 simpr 109 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → 𝐵 = -∞)
289adantr 272 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
29 mnfle 9419 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
3028, 29syl 14 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → -∞ ≤ 𝐴)
3127, 30eqbrtrd 3895 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → 𝐵𝐴)
32 simpl2 953 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵 ∈ ℝ*)
33 xrletri3 9429 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
349, 32, 33syl2anc 406 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
3534adantr 272 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
3626, 31, 35mpbir2and 896 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → 𝐴 = 𝐵)
3736oveq1d 5721 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) = (𝐵 +𝑒 𝐶))
3825, 37breqtrd 3899 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
3938adantlr 464 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
40 elxr 9404 . . . . . . 7 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
4132, 40sylib 121 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
4241adantr 272 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
438, 23, 39, 42mpjao3dan 1253 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
4443anassrs 395 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
4512adantr 272 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
4645xrleidd 9428 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶))
47 simplr 500 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → 𝐴𝐵)
48 pnfge 9416 . . . . . . . . . 10 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
4932, 48syl 14 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵 ≤ +∞)
5049adantr 272 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → 𝐵 ≤ +∞)
51 simpr 109 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → 𝐴 = +∞)
5250, 51breqtrrd 3901 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → 𝐵𝐴)
5334adantr 272 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
5447, 52, 53mpbir2and 896 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → 𝐴 = 𝐵)
5554oveq1d 5721 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) = (𝐵 +𝑒 𝐶))
5646, 55breqtrd 3899 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
5756adantlr 464 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
58 oveq1 5713 . . . . 5 (𝐴 = -∞ → (𝐴 +𝑒 𝐶) = (-∞ +𝑒 𝐶))
59 renepnf 7685 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ≠ +∞)
60 xaddmnf2 9473 . . . . . . 7 ((𝐶 ∈ ℝ*𝐶 ≠ +∞) → (-∞ +𝑒 𝐶) = -∞)
6117, 59, 60syl2anc 406 . . . . . 6 (𝐶 ∈ ℝ → (-∞ +𝑒 𝐶) = -∞)
6261adantl 273 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) → (-∞ +𝑒 𝐶) = -∞)
6358, 62sylan9eqr 2154 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐶) = -∞)
64 xaddcl 9484 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
6532, 10, 64syl2anc 406 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
6665ad2antrr 475 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
67 mnfle 9419 . . . . 5 ((𝐵 +𝑒 𝐶) ∈ ℝ* → -∞ ≤ (𝐵 +𝑒 𝐶))
6866, 67syl 14 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → -∞ ≤ (𝐵 +𝑒 𝐶))
6963, 68eqbrtrd 3895 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
70 elxr 9404 . . . . 5 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
719, 70sylib 121 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7271adantr 272 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7344, 57, 69, 72mpjao3dan 1253 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
7438adantlr 464 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
7512ad2antrr 475 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
7675, 14syl 14 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐴 +𝑒 𝐶) ≤ +∞)
77 simplr 500 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → 𝐶 = +∞)
7877oveq2d 5722 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐵 +𝑒 𝐶) = (𝐵 +𝑒 +∞))
7932adantr 272 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) → 𝐵 ∈ ℝ*)
80 xaddpnf1 9470 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
8179, 80sylan 279 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
8278, 81eqtrd 2132 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐵 +𝑒 𝐶) = +∞)
8376, 82breqtrrd 3901 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) ∧ 𝐵 ≠ -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
84 xrmnfdc 9467 . . . . . 6 (𝐵 ∈ ℝ*DECID 𝐵 = -∞)
85 exmiddc 788 . . . . . 6 (DECID 𝐵 = -∞ → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞))
8684, 85syl 14 . . . . 5 (𝐵 ∈ ℝ* → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞))
87 df-ne 2268 . . . . . 6 (𝐵 ≠ -∞ ↔ ¬ 𝐵 = -∞)
8887orbi2i 720 . . . . 5 ((𝐵 = -∞ ∨ 𝐵 ≠ -∞) ↔ (𝐵 = -∞ ∨ ¬ 𝐵 = -∞))
8986, 88sylibr 133 . . . 4 (𝐵 ∈ ℝ* → (𝐵 = -∞ ∨ 𝐵 ≠ -∞))
9079, 89syl 14 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) → (𝐵 = -∞ ∨ 𝐵 ≠ -∞))
9174, 83, 90mpjaodan 753 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
9256adantlr 464 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
93 simplr 500 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → 𝐶 = -∞)
9493oveq2d 5722 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 𝐶) = (𝐴 +𝑒 -∞))
959adantr 272 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) → 𝐴 ∈ ℝ*)
96 xaddmnf1 9472 . . . . . 6 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
9795, 96sylan 279 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
9894, 97eqtrd 2132 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 𝐶) = -∞)
9965ad2antrr 475 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
10099, 67syl 14 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → -∞ ≤ (𝐵 +𝑒 𝐶))
10198, 100eqbrtrd 3895 . . 3 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
102 xrpnfdc 9466 . . . . . 6 (𝐴 ∈ ℝ*DECID 𝐴 = +∞)
103 exmiddc 788 . . . . . 6 (DECID 𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
104102, 103syl 14 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
105 df-ne 2268 . . . . . 6 (𝐴 ≠ +∞ ↔ ¬ 𝐴 = +∞)
106105orbi2i 720 . . . . 5 ((𝐴 = +∞ ∨ 𝐴 ≠ +∞) ↔ (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
107104, 106sylibr 133 . . . 4 (𝐴 ∈ ℝ* → (𝐴 = +∞ ∨ 𝐴 ≠ +∞))
10895, 107syl 14 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) → (𝐴 = +∞ ∨ 𝐴 ≠ +∞))
10992, 101, 108mpjaodan 753 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝐶 = -∞) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
110 elxr 9404 . . 3 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
11110, 110sylib 121 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
11273, 91, 109, 111mpjao3dan 1253 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 670  DECID wdc 786  w3o 929  w3a 930   = wceq 1299  wcel 1448  wne 2267   class class class wbr 3875  (class class class)co 5706  cr 7499   + caddc 7503  +∞cpnf 7669  -∞cmnf 7670  *cxr 7671  cle 7673   +𝑒 cxad 9398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-i2m1 7600  ax-0id 7603  ax-rnegex 7604  ax-pre-ltirr 7607  ax-pre-apti 7610  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-xadd 9401
This theorem is referenced by:  xleadd2a  9498  xleadd1  9499  xaddge0  9502  xle2add  9503  xblss2ps  12332  xblss2  12333
  Copyright terms: Public domain W3C validator