ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemkle GIF version

Theorem iseqf1olemkle 10150
Description: Lemma for seq3f1o 10170. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemkle.n (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1olemkle.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemkle.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemkle.const (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
Assertion
Ref Expression
iseqf1olemkle (𝜑𝐾 ≤ (𝐽𝐾))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝑀
Allowed substitution hints:   𝜑(𝑥)   𝑁(𝑥)

Proof of Theorem iseqf1olemkle
StepHypRef Expression
1 iseqf1olemkle.k . . . . . 6 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzelz 9699 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
31, 2syl 14 . . . . 5 (𝜑𝐾 ∈ ℤ)
43adantr 272 . . . 4 ((𝜑𝐾 < (𝐽𝐾)) → 𝐾 ∈ ℤ)
54zred 9077 . . 3 ((𝜑𝐾 < (𝐽𝐾)) → 𝐾 ∈ ℝ)
6 iseqf1olemkle.j . . . . . . . . 9 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
7 f1ocnv 5336 . . . . . . . . 9 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
86, 7syl 14 . . . . . . . 8 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
9 f1of 5323 . . . . . . . 8 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
108, 9syl 14 . . . . . . 7 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
1110, 1ffvelrnd 5510 . . . . . 6 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
12 elfzelz 9699 . . . . . 6 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
1311, 12syl 14 . . . . 5 (𝜑 → (𝐽𝐾) ∈ ℤ)
1413adantr 272 . . . 4 ((𝜑𝐾 < (𝐽𝐾)) → (𝐽𝐾) ∈ ℤ)
1514zred 9077 . . 3 ((𝜑𝐾 < (𝐽𝐾)) → (𝐽𝐾) ∈ ℝ)
16 simpr 109 . . 3 ((𝜑𝐾 < (𝐽𝐾)) → 𝐾 < (𝐽𝐾))
175, 15, 16ltled 7804 . 2 ((𝜑𝐾 < (𝐽𝐾)) → 𝐾 ≤ (𝐽𝐾))
183zred 9077 . . 3 (𝜑𝐾 ∈ ℝ)
19 eqle 7778 . . 3 ((𝐾 ∈ ℝ ∧ 𝐾 = (𝐽𝐾)) → 𝐾 ≤ (𝐽𝐾))
2018, 19sylan 279 . 2 ((𝜑𝐾 = (𝐽𝐾)) → 𝐾 ≤ (𝐽𝐾))
216adantr 272 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
221adantr 272 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 ∈ (𝑀...𝑁))
23 f1ocnvfv2 5633 . . . . 5 ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(𝐽𝐾)) = 𝐾)
2421, 22, 23syl2anc 406 . . . 4 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽‘(𝐽𝐾)) = 𝐾)
25 fveq2 5375 . . . . . 6 (𝑥 = (𝐽𝐾) → (𝐽𝑥) = (𝐽‘(𝐽𝐾)))
26 id 19 . . . . . 6 (𝑥 = (𝐽𝐾) → 𝑥 = (𝐽𝐾))
2725, 26eqeq12d 2129 . . . . 5 (𝑥 = (𝐽𝐾) → ((𝐽𝑥) = 𝑥 ↔ (𝐽‘(𝐽𝐾)) = (𝐽𝐾)))
28 iseqf1olemkle.const . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
2928adantr 272 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
30 elfzuz 9695 . . . . . . . 8 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ (ℤ𝑀))
3111, 30syl 14 . . . . . . 7 (𝜑 → (𝐽𝐾) ∈ (ℤ𝑀))
3231adantr 272 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽𝐾) ∈ (ℤ𝑀))
333adantr 272 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 ∈ ℤ)
34 simpr 109 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽𝐾) < 𝐾)
35 elfzo2 9820 . . . . . 6 ((𝐽𝐾) ∈ (𝑀..^𝐾) ↔ ((𝐽𝐾) ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) < 𝐾))
3632, 33, 34, 35syl3anbrc 1148 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽𝐾) ∈ (𝑀..^𝐾))
3727, 29, 36rspcdva 2765 . . . 4 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽‘(𝐽𝐾)) = (𝐽𝐾))
3824, 37eqtr3d 2149 . . 3 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 = (𝐽𝐾))
3938, 20syldan 278 . 2 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 ≤ (𝐽𝐾))
40 ztri3or 9001 . . 3 ((𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → (𝐾 < (𝐽𝐾) ∨ 𝐾 = (𝐽𝐾) ∨ (𝐽𝐾) < 𝐾))
413, 13, 40syl2anc 406 . 2 (𝜑 → (𝐾 < (𝐽𝐾) ∨ 𝐾 = (𝐽𝐾) ∨ (𝐽𝐾) < 𝐾))
4217, 20, 39, 41mpjao3dan 1268 1 (𝜑𝐾 ≤ (𝐽𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3o 944   = wceq 1314  wcel 1463  wral 2390   class class class wbr 3895  ccnv 4498  wf 5077  1-1-ontowf1o 5080  cfv 5081  (class class class)co 5728  cr 7546   < clt 7724  cle 7725  cz 8958  cuz 9228  ...cfz 9683  ..^cfzo 9812
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-n0 8882  df-z 8959  df-uz 9229  df-fz 9684  df-fzo 9813
This theorem is referenced by:  iseqf1olemqk  10160  seq3f1olemqsumkj  10164  seq3f1olemqsumk  10165
  Copyright terms: Public domain W3C validator