ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemkle GIF version

Theorem iseqf1olemkle 10571
Description: Lemma for seq3f1o 10591. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemkle.n (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1olemkle.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemkle.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemkle.const (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
Assertion
Ref Expression
iseqf1olemkle (𝜑𝐾 ≤ (𝐽𝐾))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝑀
Allowed substitution hints:   𝜑(𝑥)   𝑁(𝑥)

Proof of Theorem iseqf1olemkle
StepHypRef Expression
1 iseqf1olemkle.k . . . . . 6 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzelz 10094 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
31, 2syl 14 . . . . 5 (𝜑𝐾 ∈ ℤ)
43adantr 276 . . . 4 ((𝜑𝐾 < (𝐽𝐾)) → 𝐾 ∈ ℤ)
54zred 9442 . . 3 ((𝜑𝐾 < (𝐽𝐾)) → 𝐾 ∈ ℝ)
6 iseqf1olemkle.j . . . . . . . . 9 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
7 f1ocnv 5514 . . . . . . . . 9 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
86, 7syl 14 . . . . . . . 8 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
9 f1of 5501 . . . . . . . 8 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
108, 9syl 14 . . . . . . 7 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
1110, 1ffvelcdmd 5695 . . . . . 6 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
12 elfzelz 10094 . . . . . 6 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
1311, 12syl 14 . . . . 5 (𝜑 → (𝐽𝐾) ∈ ℤ)
1413adantr 276 . . . 4 ((𝜑𝐾 < (𝐽𝐾)) → (𝐽𝐾) ∈ ℤ)
1514zred 9442 . . 3 ((𝜑𝐾 < (𝐽𝐾)) → (𝐽𝐾) ∈ ℝ)
16 simpr 110 . . 3 ((𝜑𝐾 < (𝐽𝐾)) → 𝐾 < (𝐽𝐾))
175, 15, 16ltled 8140 . 2 ((𝜑𝐾 < (𝐽𝐾)) → 𝐾 ≤ (𝐽𝐾))
183zred 9442 . . 3 (𝜑𝐾 ∈ ℝ)
19 eqle 8113 . . 3 ((𝐾 ∈ ℝ ∧ 𝐾 = (𝐽𝐾)) → 𝐾 ≤ (𝐽𝐾))
2018, 19sylan 283 . 2 ((𝜑𝐾 = (𝐽𝐾)) → 𝐾 ≤ (𝐽𝐾))
216adantr 276 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
221adantr 276 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 ∈ (𝑀...𝑁))
23 f1ocnvfv2 5822 . . . . 5 ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(𝐽𝐾)) = 𝐾)
2421, 22, 23syl2anc 411 . . . 4 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽‘(𝐽𝐾)) = 𝐾)
25 fveq2 5555 . . . . . 6 (𝑥 = (𝐽𝐾) → (𝐽𝑥) = (𝐽‘(𝐽𝐾)))
26 id 19 . . . . . 6 (𝑥 = (𝐽𝐾) → 𝑥 = (𝐽𝐾))
2725, 26eqeq12d 2208 . . . . 5 (𝑥 = (𝐽𝐾) → ((𝐽𝑥) = 𝑥 ↔ (𝐽‘(𝐽𝐾)) = (𝐽𝐾)))
28 iseqf1olemkle.const . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
2928adantr 276 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
30 elfzuz 10090 . . . . . . . 8 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ (ℤ𝑀))
3111, 30syl 14 . . . . . . 7 (𝜑 → (𝐽𝐾) ∈ (ℤ𝑀))
3231adantr 276 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽𝐾) ∈ (ℤ𝑀))
333adantr 276 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 ∈ ℤ)
34 simpr 110 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽𝐾) < 𝐾)
35 elfzo2 10219 . . . . . 6 ((𝐽𝐾) ∈ (𝑀..^𝐾) ↔ ((𝐽𝐾) ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) < 𝐾))
3632, 33, 34, 35syl3anbrc 1183 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽𝐾) ∈ (𝑀..^𝐾))
3727, 29, 36rspcdva 2870 . . . 4 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽‘(𝐽𝐾)) = (𝐽𝐾))
3824, 37eqtr3d 2228 . . 3 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 = (𝐽𝐾))
3938, 20syldan 282 . 2 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 ≤ (𝐽𝐾))
40 ztri3or 9363 . . 3 ((𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → (𝐾 < (𝐽𝐾) ∨ 𝐾 = (𝐽𝐾) ∨ (𝐽𝐾) < 𝐾))
413, 13, 40syl2anc 411 . 2 (𝜑 → (𝐾 < (𝐽𝐾) ∨ 𝐾 = (𝐽𝐾) ∨ (𝐽𝐾) < 𝐾))
4217, 20, 39, 41mpjao3dan 1318 1 (𝜑𝐾 ≤ (𝐽𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3o 979   = wceq 1364  wcel 2164  wral 2472   class class class wbr 4030  ccnv 4659  wf 5251  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  cr 7873   < clt 8056  cle 8057  cz 9320  cuz 9595  ...cfz 10077  ..^cfzo 10211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212
This theorem is referenced by:  iseqf1olemqk  10581  seq3f1olemqsumkj  10585  seq3f1olemqsumk  10586
  Copyright terms: Public domain W3C validator