Proof of Theorem iseqf1olemkle
| Step | Hyp | Ref
| Expression |
| 1 | | iseqf1olemkle.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| 2 | | elfzelz 10100 |
. . . . . 6
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
| 3 | 1, 2 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 4 | 3 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 < (◡𝐽‘𝐾)) → 𝐾 ∈ ℤ) |
| 5 | 4 | zred 9448 |
. . 3
⊢ ((𝜑 ∧ 𝐾 < (◡𝐽‘𝐾)) → 𝐾 ∈ ℝ) |
| 6 | | iseqf1olemkle.j |
. . . . . . . . 9
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 7 | | f1ocnv 5517 |
. . . . . . . . 9
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 8 | 6, 7 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 9 | | f1of 5504 |
. . . . . . . 8
⊢ (◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 10 | 8, 9 | syl 14 |
. . . . . . 7
⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 11 | 10, 1 | ffvelcdmd 5698 |
. . . . . 6
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) |
| 12 | | elfzelz 10100 |
. . . . . 6
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ ℤ) |
| 13 | 11, 12 | syl 14 |
. . . . 5
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ ℤ) |
| 14 | 13 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 < (◡𝐽‘𝐾)) → (◡𝐽‘𝐾) ∈ ℤ) |
| 15 | 14 | zred 9448 |
. . 3
⊢ ((𝜑 ∧ 𝐾 < (◡𝐽‘𝐾)) → (◡𝐽‘𝐾) ∈ ℝ) |
| 16 | | simpr 110 |
. . 3
⊢ ((𝜑 ∧ 𝐾 < (◡𝐽‘𝐾)) → 𝐾 < (◡𝐽‘𝐾)) |
| 17 | 5, 15, 16 | ltled 8145 |
. 2
⊢ ((𝜑 ∧ 𝐾 < (◡𝐽‘𝐾)) → 𝐾 ≤ (◡𝐽‘𝐾)) |
| 18 | 3 | zred 9448 |
. . 3
⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 19 | | eqle 8118 |
. . 3
⊢ ((𝐾 ∈ ℝ ∧ 𝐾 = (◡𝐽‘𝐾)) → 𝐾 ≤ (◡𝐽‘𝐾)) |
| 20 | 18, 19 | sylan 283 |
. 2
⊢ ((𝜑 ∧ 𝐾 = (◡𝐽‘𝐾)) → 𝐾 ≤ (◡𝐽‘𝐾)) |
| 21 | 6 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 22 | 1 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐾 ∈ (𝑀...𝑁)) |
| 23 | | f1ocnvfv2 5825 |
. . . . 5
⊢ ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(◡𝐽‘𝐾)) = 𝐾) |
| 24 | 21, 22, 23 | syl2anc 411 |
. . . 4
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (𝐽‘(◡𝐽‘𝐾)) = 𝐾) |
| 25 | | fveq2 5558 |
. . . . . 6
⊢ (𝑥 = (◡𝐽‘𝐾) → (𝐽‘𝑥) = (𝐽‘(◡𝐽‘𝐾))) |
| 26 | | id 19 |
. . . . . 6
⊢ (𝑥 = (◡𝐽‘𝐾) → 𝑥 = (◡𝐽‘𝐾)) |
| 27 | 25, 26 | eqeq12d 2211 |
. . . . 5
⊢ (𝑥 = (◡𝐽‘𝐾) → ((𝐽‘𝑥) = 𝑥 ↔ (𝐽‘(◡𝐽‘𝐾)) = (◡𝐽‘𝐾))) |
| 28 | | iseqf1olemkle.const |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) |
| 29 | 28 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) |
| 30 | | elfzuz 10096 |
. . . . . . . 8
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ (ℤ≥‘𝑀)) |
| 31 | 11, 30 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (ℤ≥‘𝑀)) |
| 32 | 31 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (◡𝐽‘𝐾) ∈ (ℤ≥‘𝑀)) |
| 33 | 3 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐾 ∈ ℤ) |
| 34 | | simpr 110 |
. . . . . 6
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (◡𝐽‘𝐾) < 𝐾) |
| 35 | | elfzo2 10225 |
. . . . . 6
⊢ ((◡𝐽‘𝐾) ∈ (𝑀..^𝐾) ↔ ((◡𝐽‘𝐾) ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) < 𝐾)) |
| 36 | 32, 33, 34, 35 | syl3anbrc 1183 |
. . . . 5
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (◡𝐽‘𝐾) ∈ (𝑀..^𝐾)) |
| 37 | 27, 29, 36 | rspcdva 2873 |
. . . 4
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (𝐽‘(◡𝐽‘𝐾)) = (◡𝐽‘𝐾)) |
| 38 | 24, 37 | eqtr3d 2231 |
. . 3
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐾 = (◡𝐽‘𝐾)) |
| 39 | 38, 20 | syldan 282 |
. 2
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐾 ≤ (◡𝐽‘𝐾)) |
| 40 | | ztri3or 9369 |
. . 3
⊢ ((𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ) → (𝐾 < (◡𝐽‘𝐾) ∨ 𝐾 = (◡𝐽‘𝐾) ∨ (◡𝐽‘𝐾) < 𝐾)) |
| 41 | 3, 13, 40 | syl2anc 411 |
. 2
⊢ (𝜑 → (𝐾 < (◡𝐽‘𝐾) ∨ 𝐾 = (◡𝐽‘𝐾) ∨ (◡𝐽‘𝐾) < 𝐾)) |
| 42 | 17, 20, 39, 41 | mpjao3dan 1318 |
1
⊢ (𝜑 → 𝐾 ≤ (◡𝐽‘𝐾)) |