ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemkle GIF version

Theorem iseqf1olemkle 10409
Description: Lemma for seq3f1o 10429. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemkle.n (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1olemkle.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemkle.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemkle.const (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
Assertion
Ref Expression
iseqf1olemkle (𝜑𝐾 ≤ (𝐽𝐾))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝑀
Allowed substitution hints:   𝜑(𝑥)   𝑁(𝑥)

Proof of Theorem iseqf1olemkle
StepHypRef Expression
1 iseqf1olemkle.k . . . . . 6 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzelz 9951 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
31, 2syl 14 . . . . 5 (𝜑𝐾 ∈ ℤ)
43adantr 274 . . . 4 ((𝜑𝐾 < (𝐽𝐾)) → 𝐾 ∈ ℤ)
54zred 9304 . . 3 ((𝜑𝐾 < (𝐽𝐾)) → 𝐾 ∈ ℝ)
6 iseqf1olemkle.j . . . . . . . . 9 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
7 f1ocnv 5439 . . . . . . . . 9 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
86, 7syl 14 . . . . . . . 8 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
9 f1of 5426 . . . . . . . 8 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
108, 9syl 14 . . . . . . 7 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
1110, 1ffvelrnd 5615 . . . . . 6 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
12 elfzelz 9951 . . . . . 6 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
1311, 12syl 14 . . . . 5 (𝜑 → (𝐽𝐾) ∈ ℤ)
1413adantr 274 . . . 4 ((𝜑𝐾 < (𝐽𝐾)) → (𝐽𝐾) ∈ ℤ)
1514zred 9304 . . 3 ((𝜑𝐾 < (𝐽𝐾)) → (𝐽𝐾) ∈ ℝ)
16 simpr 109 . . 3 ((𝜑𝐾 < (𝐽𝐾)) → 𝐾 < (𝐽𝐾))
175, 15, 16ltled 8008 . 2 ((𝜑𝐾 < (𝐽𝐾)) → 𝐾 ≤ (𝐽𝐾))
183zred 9304 . . 3 (𝜑𝐾 ∈ ℝ)
19 eqle 7981 . . 3 ((𝐾 ∈ ℝ ∧ 𝐾 = (𝐽𝐾)) → 𝐾 ≤ (𝐽𝐾))
2018, 19sylan 281 . 2 ((𝜑𝐾 = (𝐽𝐾)) → 𝐾 ≤ (𝐽𝐾))
216adantr 274 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
221adantr 274 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 ∈ (𝑀...𝑁))
23 f1ocnvfv2 5740 . . . . 5 ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(𝐽𝐾)) = 𝐾)
2421, 22, 23syl2anc 409 . . . 4 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽‘(𝐽𝐾)) = 𝐾)
25 fveq2 5480 . . . . . 6 (𝑥 = (𝐽𝐾) → (𝐽𝑥) = (𝐽‘(𝐽𝐾)))
26 id 19 . . . . . 6 (𝑥 = (𝐽𝐾) → 𝑥 = (𝐽𝐾))
2725, 26eqeq12d 2179 . . . . 5 (𝑥 = (𝐽𝐾) → ((𝐽𝑥) = 𝑥 ↔ (𝐽‘(𝐽𝐾)) = (𝐽𝐾)))
28 iseqf1olemkle.const . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
2928adantr 274 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
30 elfzuz 9947 . . . . . . . 8 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ (ℤ𝑀))
3111, 30syl 14 . . . . . . 7 (𝜑 → (𝐽𝐾) ∈ (ℤ𝑀))
3231adantr 274 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽𝐾) ∈ (ℤ𝑀))
333adantr 274 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 ∈ ℤ)
34 simpr 109 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽𝐾) < 𝐾)
35 elfzo2 10075 . . . . . 6 ((𝐽𝐾) ∈ (𝑀..^𝐾) ↔ ((𝐽𝐾) ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) < 𝐾))
3632, 33, 34, 35syl3anbrc 1170 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽𝐾) ∈ (𝑀..^𝐾))
3727, 29, 36rspcdva 2830 . . . 4 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽‘(𝐽𝐾)) = (𝐽𝐾))
3824, 37eqtr3d 2199 . . 3 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 = (𝐽𝐾))
3938, 20syldan 280 . 2 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 ≤ (𝐽𝐾))
40 ztri3or 9225 . . 3 ((𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → (𝐾 < (𝐽𝐾) ∨ 𝐾 = (𝐽𝐾) ∨ (𝐽𝐾) < 𝐾))
413, 13, 40syl2anc 409 . 2 (𝜑 → (𝐾 < (𝐽𝐾) ∨ 𝐾 = (𝐽𝐾) ∨ (𝐽𝐾) < 𝐾))
4217, 20, 39, 41mpjao3dan 1296 1 (𝜑𝐾 ≤ (𝐽𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3o 966   = wceq 1342  wcel 2135  wral 2442   class class class wbr 3976  ccnv 4597  wf 5178  1-1-ontowf1o 5181  cfv 5182  (class class class)co 5836  cr 7743   < clt 7924  cle 7925  cz 9182  cuz 9457  ...cfz 9935  ..^cfzo 10067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-fz 9936  df-fzo 10068
This theorem is referenced by:  iseqf1olemqk  10419  seq3f1olemqsumkj  10423  seq3f1olemqsumk  10424
  Copyright terms: Public domain W3C validator