ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemkle GIF version

Theorem iseqf1olemkle 10589
Description: Lemma for seq3f1o 10609. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemkle.n (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1olemkle.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemkle.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemkle.const (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
Assertion
Ref Expression
iseqf1olemkle (𝜑𝐾 ≤ (𝐽𝐾))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝑀
Allowed substitution hints:   𝜑(𝑥)   𝑁(𝑥)

Proof of Theorem iseqf1olemkle
StepHypRef Expression
1 iseqf1olemkle.k . . . . . 6 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzelz 10100 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
31, 2syl 14 . . . . 5 (𝜑𝐾 ∈ ℤ)
43adantr 276 . . . 4 ((𝜑𝐾 < (𝐽𝐾)) → 𝐾 ∈ ℤ)
54zred 9448 . . 3 ((𝜑𝐾 < (𝐽𝐾)) → 𝐾 ∈ ℝ)
6 iseqf1olemkle.j . . . . . . . . 9 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
7 f1ocnv 5517 . . . . . . . . 9 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
86, 7syl 14 . . . . . . . 8 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
9 f1of 5504 . . . . . . . 8 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
108, 9syl 14 . . . . . . 7 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
1110, 1ffvelcdmd 5698 . . . . . 6 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
12 elfzelz 10100 . . . . . 6 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
1311, 12syl 14 . . . . 5 (𝜑 → (𝐽𝐾) ∈ ℤ)
1413adantr 276 . . . 4 ((𝜑𝐾 < (𝐽𝐾)) → (𝐽𝐾) ∈ ℤ)
1514zred 9448 . . 3 ((𝜑𝐾 < (𝐽𝐾)) → (𝐽𝐾) ∈ ℝ)
16 simpr 110 . . 3 ((𝜑𝐾 < (𝐽𝐾)) → 𝐾 < (𝐽𝐾))
175, 15, 16ltled 8145 . 2 ((𝜑𝐾 < (𝐽𝐾)) → 𝐾 ≤ (𝐽𝐾))
183zred 9448 . . 3 (𝜑𝐾 ∈ ℝ)
19 eqle 8118 . . 3 ((𝐾 ∈ ℝ ∧ 𝐾 = (𝐽𝐾)) → 𝐾 ≤ (𝐽𝐾))
2018, 19sylan 283 . 2 ((𝜑𝐾 = (𝐽𝐾)) → 𝐾 ≤ (𝐽𝐾))
216adantr 276 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
221adantr 276 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 ∈ (𝑀...𝑁))
23 f1ocnvfv2 5825 . . . . 5 ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(𝐽𝐾)) = 𝐾)
2421, 22, 23syl2anc 411 . . . 4 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽‘(𝐽𝐾)) = 𝐾)
25 fveq2 5558 . . . . . 6 (𝑥 = (𝐽𝐾) → (𝐽𝑥) = (𝐽‘(𝐽𝐾)))
26 id 19 . . . . . 6 (𝑥 = (𝐽𝐾) → 𝑥 = (𝐽𝐾))
2725, 26eqeq12d 2211 . . . . 5 (𝑥 = (𝐽𝐾) → ((𝐽𝑥) = 𝑥 ↔ (𝐽‘(𝐽𝐾)) = (𝐽𝐾)))
28 iseqf1olemkle.const . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
2928adantr 276 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
30 elfzuz 10096 . . . . . . . 8 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ (ℤ𝑀))
3111, 30syl 14 . . . . . . 7 (𝜑 → (𝐽𝐾) ∈ (ℤ𝑀))
3231adantr 276 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽𝐾) ∈ (ℤ𝑀))
333adantr 276 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 ∈ ℤ)
34 simpr 110 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽𝐾) < 𝐾)
35 elfzo2 10225 . . . . . 6 ((𝐽𝐾) ∈ (𝑀..^𝐾) ↔ ((𝐽𝐾) ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) < 𝐾))
3632, 33, 34, 35syl3anbrc 1183 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽𝐾) ∈ (𝑀..^𝐾))
3727, 29, 36rspcdva 2873 . . . 4 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽‘(𝐽𝐾)) = (𝐽𝐾))
3824, 37eqtr3d 2231 . . 3 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 = (𝐽𝐾))
3938, 20syldan 282 . 2 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 ≤ (𝐽𝐾))
40 ztri3or 9369 . . 3 ((𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → (𝐾 < (𝐽𝐾) ∨ 𝐾 = (𝐽𝐾) ∨ (𝐽𝐾) < 𝐾))
413, 13, 40syl2anc 411 . 2 (𝜑 → (𝐾 < (𝐽𝐾) ∨ 𝐾 = (𝐽𝐾) ∨ (𝐽𝐾) < 𝐾))
4217, 20, 39, 41mpjao3dan 1318 1 (𝜑𝐾 ≤ (𝐽𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3o 979   = wceq 1364  wcel 2167  wral 2475   class class class wbr 4033  ccnv 4662  wf 5254  1-1-ontowf1o 5257  cfv 5258  (class class class)co 5922  cr 7878   < clt 8061  cle 8062  cz 9326  cuz 9601  ...cfz 10083  ..^cfzo 10217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218
This theorem is referenced by:  iseqf1olemqk  10599  seq3f1olemqsumkj  10603  seq3f1olemqsumk  10604
  Copyright terms: Public domain W3C validator