| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcld | GIF version | ||
| Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| nnmulcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| Ref | Expression |
|---|---|
| nnmulcld | ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | nnmulcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 3 | nnmulcl 9087 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 (class class class)co 5962 · cmul 7960 ℕcn 9066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4173 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-1rid 8062 ax-cnre 8066 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-iota 5246 df-fv 5293 df-ov 5965 df-inn 9067 |
| This theorem is referenced by: qbtwnre 10431 bcval 10926 bcm1k 10937 bcp1n 10938 permnn 10948 cvg1nlemcxze 11378 cvg1nlemf 11379 cvg1nlemcau 11380 cvg1nlemres 11381 trireciplem 11896 efaddlem 12070 eftlub 12086 eirraplem 12173 modmulconst 12219 lcmval 12470 oddpwdclemxy 12576 oddpwdclemdc 12580 sqpweven 12582 2sqpwodd 12583 crth 12631 phimullem 12632 modprm0 12662 pcqmul 12711 pcaddlem 12747 pcbc 12759 oddprmdvds 12762 pockthlem 12764 pockthg 12765 4sqlem13m 12811 4sqlem14 12812 4sqlem17 12815 4sqlem18 12816 evenennn 12849 mpodvdsmulf1o 15547 fsumdvdsmul 15548 sgmmul 15553 gausslemma2dlem1a 15620 lgseisenlem2 15633 lgseisenlem4 15635 lgsquadlemsfi 15637 lgsquadlem2 15640 lgsquadlem3 15641 lgsquad2lem2 15644 2sqlem6 15682 |
| Copyright terms: Public domain | W3C validator |