| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcld | GIF version | ||
| Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| nnmulcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| Ref | Expression |
|---|---|
| nnmulcld | ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | nnmulcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 3 | nnmulcl 9011 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5922 · cmul 7884 ℕcn 8990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-1rid 7986 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 |
| This theorem is referenced by: qbtwnre 10346 bcval 10841 bcm1k 10852 bcp1n 10853 permnn 10863 cvg1nlemcxze 11147 cvg1nlemf 11148 cvg1nlemcau 11149 cvg1nlemres 11150 trireciplem 11665 efaddlem 11839 eftlub 11855 eirraplem 11942 modmulconst 11988 lcmval 12231 oddpwdclemxy 12337 oddpwdclemdc 12341 sqpweven 12343 2sqpwodd 12344 crth 12392 phimullem 12393 modprm0 12423 pcqmul 12472 pcaddlem 12508 pcbc 12520 oddprmdvds 12523 pockthlem 12525 pockthg 12526 4sqlem13m 12572 4sqlem14 12573 4sqlem17 12576 4sqlem18 12577 evenennn 12610 mpodvdsmulf1o 15226 fsumdvdsmul 15227 sgmmul 15232 gausslemma2dlem1a 15299 lgseisenlem2 15312 lgseisenlem4 15314 lgsquadlemsfi 15316 lgsquadlem2 15319 lgsquadlem3 15320 lgsquad2lem2 15323 2sqlem6 15361 |
| Copyright terms: Public domain | W3C validator |