Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnmulcld | GIF version |
Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
nnmulcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
Ref | Expression |
---|---|
nnmulcld | ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnmulcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
3 | nnmulcl 8899 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 (class class class)co 5853 · cmul 7779 ℕcn 8878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-1rid 7881 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 |
This theorem is referenced by: qbtwnre 10213 bcval 10683 bcm1k 10694 bcp1n 10695 permnn 10705 cvg1nlemcxze 10946 cvg1nlemf 10947 cvg1nlemcau 10948 cvg1nlemres 10949 trireciplem 11463 efaddlem 11637 eftlub 11653 eirraplem 11739 modmulconst 11785 lcmval 12017 oddpwdclemxy 12123 oddpwdclemdc 12127 sqpweven 12129 2sqpwodd 12130 crth 12178 phimullem 12179 modprm0 12208 pcqmul 12257 pcaddlem 12292 pcbc 12303 oddprmdvds 12306 pockthlem 12308 pockthg 12309 evenennn 12348 2sqlem6 13750 |
Copyright terms: Public domain | W3C validator |