ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmulcld GIF version

Theorem nnmulcld 8781
Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nnge1d.1 (𝜑𝐴 ∈ ℕ)
nnmulcld.2 (𝜑𝐵 ∈ ℕ)
Assertion
Ref Expression
nnmulcld (𝜑 → (𝐴 · 𝐵) ∈ ℕ)

Proof of Theorem nnmulcld
StepHypRef Expression
1 nnge1d.1 . 2 (𝜑𝐴 ∈ ℕ)
2 nnmulcld.2 . 2 (𝜑𝐵 ∈ ℕ)
3 nnmulcl 8753 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
41, 2, 3syl2anc 408 1 (𝜑 → (𝐴 · 𝐵) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1480  (class class class)co 5774   · cmul 7637  cn 8732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-1rid 7739  ax-cnre 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777  df-inn 8733
This theorem is referenced by:  qbtwnre  10046  bcval  10507  bcm1k  10518  bcp1n  10519  permnn  10529  cvg1nlemcxze  10766  cvg1nlemf  10767  cvg1nlemcau  10768  cvg1nlemres  10769  trireciplem  11281  efaddlem  11392  eftlub  11408  eirraplem  11494  modmulconst  11536  lcmval  11755  oddpwdclemxy  11858  oddpwdclemdc  11862  sqpweven  11864  2sqpwodd  11865  crth  11911  phimullem  11912  evenennn  11917
  Copyright terms: Public domain W3C validator