| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcld | GIF version | ||
| Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| nnmulcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| Ref | Expression |
|---|---|
| nnmulcld | ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | nnmulcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 3 | nnmulcl 9028 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5925 · cmul 7901 ℕcn 9007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-1rid 8003 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 |
| This theorem is referenced by: qbtwnre 10363 bcval 10858 bcm1k 10869 bcp1n 10870 permnn 10880 cvg1nlemcxze 11164 cvg1nlemf 11165 cvg1nlemcau 11166 cvg1nlemres 11167 trireciplem 11682 efaddlem 11856 eftlub 11872 eirraplem 11959 modmulconst 12005 lcmval 12256 oddpwdclemxy 12362 oddpwdclemdc 12366 sqpweven 12368 2sqpwodd 12369 crth 12417 phimullem 12418 modprm0 12448 pcqmul 12497 pcaddlem 12533 pcbc 12545 oddprmdvds 12548 pockthlem 12550 pockthg 12551 4sqlem13m 12597 4sqlem14 12598 4sqlem17 12601 4sqlem18 12602 evenennn 12635 mpodvdsmulf1o 15310 fsumdvdsmul 15311 sgmmul 15316 gausslemma2dlem1a 15383 lgseisenlem2 15396 lgseisenlem4 15398 lgsquadlemsfi 15400 lgsquadlem2 15403 lgsquadlem3 15404 lgsquad2lem2 15407 2sqlem6 15445 |
| Copyright terms: Public domain | W3C validator |