| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcld | GIF version | ||
| Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| nnmulcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| Ref | Expression |
|---|---|
| nnmulcld | ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | nnmulcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 3 | nnmulcl 9056 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 (class class class)co 5943 · cmul 7929 ℕcn 9035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-1rid 8031 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-inn 9036 |
| This theorem is referenced by: qbtwnre 10397 bcval 10892 bcm1k 10903 bcp1n 10904 permnn 10914 cvg1nlemcxze 11235 cvg1nlemf 11236 cvg1nlemcau 11237 cvg1nlemres 11238 trireciplem 11753 efaddlem 11927 eftlub 11943 eirraplem 12030 modmulconst 12076 lcmval 12327 oddpwdclemxy 12433 oddpwdclemdc 12437 sqpweven 12439 2sqpwodd 12440 crth 12488 phimullem 12489 modprm0 12519 pcqmul 12568 pcaddlem 12604 pcbc 12616 oddprmdvds 12619 pockthlem 12621 pockthg 12622 4sqlem13m 12668 4sqlem14 12669 4sqlem17 12672 4sqlem18 12673 evenennn 12706 mpodvdsmulf1o 15404 fsumdvdsmul 15405 sgmmul 15410 gausslemma2dlem1a 15477 lgseisenlem2 15490 lgseisenlem4 15492 lgsquadlemsfi 15494 lgsquadlem2 15497 lgsquadlem3 15498 lgsquad2lem2 15501 2sqlem6 15539 |
| Copyright terms: Public domain | W3C validator |