| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcld | GIF version | ||
| Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| nnmulcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| Ref | Expression |
|---|---|
| nnmulcld | ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | nnmulcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 3 | nnmulcl 9030 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5925 · cmul 7903 ℕcn 9009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-1rid 8005 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9010 |
| This theorem is referenced by: qbtwnre 10365 bcval 10860 bcm1k 10871 bcp1n 10872 permnn 10882 cvg1nlemcxze 11166 cvg1nlemf 11167 cvg1nlemcau 11168 cvg1nlemres 11169 trireciplem 11684 efaddlem 11858 eftlub 11874 eirraplem 11961 modmulconst 12007 lcmval 12258 oddpwdclemxy 12364 oddpwdclemdc 12368 sqpweven 12370 2sqpwodd 12371 crth 12419 phimullem 12420 modprm0 12450 pcqmul 12499 pcaddlem 12535 pcbc 12547 oddprmdvds 12550 pockthlem 12552 pockthg 12553 4sqlem13m 12599 4sqlem14 12600 4sqlem17 12603 4sqlem18 12604 evenennn 12637 mpodvdsmulf1o 15334 fsumdvdsmul 15335 sgmmul 15340 gausslemma2dlem1a 15407 lgseisenlem2 15420 lgseisenlem4 15422 lgsquadlemsfi 15424 lgsquadlem2 15427 lgsquadlem3 15428 lgsquad2lem2 15431 2sqlem6 15469 |
| Copyright terms: Public domain | W3C validator |