| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashp1i | GIF version | ||
| Description: Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| hashp1i.1 | ⊢ 𝐴 ∈ ω |
| hashp1i.2 | ⊢ 𝐵 = suc 𝐴 |
| hashp1i.3 | ⊢ (♯‘𝐴) = 𝑀 |
| hashp1i.4 | ⊢ (𝑀 + 1) = 𝑁 |
| Ref | Expression |
|---|---|
| hashp1i | ⊢ (♯‘𝐵) = 𝑁 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashp1i.2 | . . . 4 ⊢ 𝐵 = suc 𝐴 | |
| 2 | df-suc 4461 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 3 | 1, 2 | eqtri 2250 | . . 3 ⊢ 𝐵 = (𝐴 ∪ {𝐴}) |
| 4 | 3 | fveq2i 5629 | . 2 ⊢ (♯‘𝐵) = (♯‘(𝐴 ∪ {𝐴})) |
| 5 | hashp1i.1 | . . . . 5 ⊢ 𝐴 ∈ ω | |
| 6 | nnfi 7030 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ 𝐴 ∈ Fin |
| 8 | nnord 4703 | . . . . 5 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 9 | ordirr 4633 | . . . . 5 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 10 | 5, 8, 9 | mp2b 8 | . . . 4 ⊢ ¬ 𝐴 ∈ 𝐴 |
| 11 | hashunsng 11024 | . . . . 5 ⊢ (𝐴 ∈ ω → ((𝐴 ∈ Fin ∧ ¬ 𝐴 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1))) | |
| 12 | 5, 11 | ax-mp 5 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐴 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1)) |
| 13 | 7, 10, 12 | mp2an 426 | . . 3 ⊢ (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1) |
| 14 | hashp1i.3 | . . . . 5 ⊢ (♯‘𝐴) = 𝑀 | |
| 15 | 14 | oveq1i 6010 | . . . 4 ⊢ ((♯‘𝐴) + 1) = (𝑀 + 1) |
| 16 | hashp1i.4 | . . . 4 ⊢ (𝑀 + 1) = 𝑁 | |
| 17 | 15, 16 | eqtri 2250 | . . 3 ⊢ ((♯‘𝐴) + 1) = 𝑁 |
| 18 | 13, 17 | eqtri 2250 | . 2 ⊢ (♯‘(𝐴 ∪ {𝐴})) = 𝑁 |
| 19 | 4, 18 | eqtri 2250 | 1 ⊢ (♯‘𝐵) = 𝑁 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∪ cun 3195 {csn 3666 Ord word 4452 suc csuc 4455 ωcom 4681 ‘cfv 5317 (class class class)co 6000 Fincfn 6885 1c1 7996 + caddc 7998 ♯chash 10992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-oadd 6564 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-ihash 10993 |
| This theorem is referenced by: hash1 11028 hash2 11029 hash3 11030 hash4 11031 |
| Copyright terms: Public domain | W3C validator |