| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashp1i | GIF version | ||
| Description: Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| hashp1i.1 | ⊢ 𝐴 ∈ ω |
| hashp1i.2 | ⊢ 𝐵 = suc 𝐴 |
| hashp1i.3 | ⊢ (♯‘𝐴) = 𝑀 |
| hashp1i.4 | ⊢ (𝑀 + 1) = 𝑁 |
| Ref | Expression |
|---|---|
| hashp1i | ⊢ (♯‘𝐵) = 𝑁 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashp1i.2 | . . . 4 ⊢ 𝐵 = suc 𝐴 | |
| 2 | df-suc 4431 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 3 | 1, 2 | eqtri 2227 | . . 3 ⊢ 𝐵 = (𝐴 ∪ {𝐴}) |
| 4 | 3 | fveq2i 5597 | . 2 ⊢ (♯‘𝐵) = (♯‘(𝐴 ∪ {𝐴})) |
| 5 | hashp1i.1 | . . . . 5 ⊢ 𝐴 ∈ ω | |
| 6 | nnfi 6990 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ 𝐴 ∈ Fin |
| 8 | nnord 4673 | . . . . 5 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 9 | ordirr 4603 | . . . . 5 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 10 | 5, 8, 9 | mp2b 8 | . . . 4 ⊢ ¬ 𝐴 ∈ 𝐴 |
| 11 | hashunsng 10984 | . . . . 5 ⊢ (𝐴 ∈ ω → ((𝐴 ∈ Fin ∧ ¬ 𝐴 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1))) | |
| 12 | 5, 11 | ax-mp 5 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐴 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1)) |
| 13 | 7, 10, 12 | mp2an 426 | . . 3 ⊢ (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1) |
| 14 | hashp1i.3 | . . . . 5 ⊢ (♯‘𝐴) = 𝑀 | |
| 15 | 14 | oveq1i 5972 | . . . 4 ⊢ ((♯‘𝐴) + 1) = (𝑀 + 1) |
| 16 | hashp1i.4 | . . . 4 ⊢ (𝑀 + 1) = 𝑁 | |
| 17 | 15, 16 | eqtri 2227 | . . 3 ⊢ ((♯‘𝐴) + 1) = 𝑁 |
| 18 | 13, 17 | eqtri 2227 | . 2 ⊢ (♯‘(𝐴 ∪ {𝐴})) = 𝑁 |
| 19 | 4, 18 | eqtri 2227 | 1 ⊢ (♯‘𝐵) = 𝑁 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∪ cun 3168 {csn 3638 Ord word 4422 suc csuc 4425 ωcom 4651 ‘cfv 5285 (class class class)co 5962 Fincfn 6845 1c1 7956 + caddc 7958 ♯chash 10952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-frec 6495 df-1o 6520 df-oadd 6524 df-er 6638 df-en 6846 df-dom 6847 df-fin 6848 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-inn 9067 df-n0 9326 df-z 9403 df-uz 9679 df-fz 10161 df-ihash 10953 |
| This theorem is referenced by: hash1 10988 hash2 10989 hash3 10990 hash4 10991 |
| Copyright terms: Public domain | W3C validator |