![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hashp1i | GIF version |
Description: Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
hashp1i.1 | ⊢ 𝐴 ∈ ω |
hashp1i.2 | ⊢ 𝐵 = suc 𝐴 |
hashp1i.3 | ⊢ (♯‘𝐴) = 𝑀 |
hashp1i.4 | ⊢ (𝑀 + 1) = 𝑁 |
Ref | Expression |
---|---|
hashp1i | ⊢ (♯‘𝐵) = 𝑁 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashp1i.2 | . . . 4 ⊢ 𝐵 = suc 𝐴 | |
2 | df-suc 4402 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
3 | 1, 2 | eqtri 2214 | . . 3 ⊢ 𝐵 = (𝐴 ∪ {𝐴}) |
4 | 3 | fveq2i 5557 | . 2 ⊢ (♯‘𝐵) = (♯‘(𝐴 ∪ {𝐴})) |
5 | hashp1i.1 | . . . . 5 ⊢ 𝐴 ∈ ω | |
6 | nnfi 6928 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ 𝐴 ∈ Fin |
8 | nnord 4644 | . . . . 5 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
9 | ordirr 4574 | . . . . 5 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
10 | 5, 8, 9 | mp2b 8 | . . . 4 ⊢ ¬ 𝐴 ∈ 𝐴 |
11 | hashunsng 10878 | . . . . 5 ⊢ (𝐴 ∈ ω → ((𝐴 ∈ Fin ∧ ¬ 𝐴 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1))) | |
12 | 5, 11 | ax-mp 5 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐴 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1)) |
13 | 7, 10, 12 | mp2an 426 | . . 3 ⊢ (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1) |
14 | hashp1i.3 | . . . . 5 ⊢ (♯‘𝐴) = 𝑀 | |
15 | 14 | oveq1i 5928 | . . . 4 ⊢ ((♯‘𝐴) + 1) = (𝑀 + 1) |
16 | hashp1i.4 | . . . 4 ⊢ (𝑀 + 1) = 𝑁 | |
17 | 15, 16 | eqtri 2214 | . . 3 ⊢ ((♯‘𝐴) + 1) = 𝑁 |
18 | 13, 17 | eqtri 2214 | . 2 ⊢ (♯‘(𝐴 ∪ {𝐴})) = 𝑁 |
19 | 4, 18 | eqtri 2214 | 1 ⊢ (♯‘𝐵) = 𝑁 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∪ cun 3151 {csn 3618 Ord word 4393 suc csuc 4396 ωcom 4622 ‘cfv 5254 (class class class)co 5918 Fincfn 6794 1c1 7873 + caddc 7875 ♯chash 10846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-fz 10075 df-ihash 10847 |
This theorem is referenced by: hash1 10882 hash2 10883 hash3 10884 hash4 10885 |
Copyright terms: Public domain | W3C validator |