ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashp1i GIF version

Theorem hashp1i 10745
Description: Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
Hypotheses
Ref Expression
hashp1i.1 𝐴 ∈ ω
hashp1i.2 𝐵 = suc 𝐴
hashp1i.3 (♯‘𝐴) = 𝑀
hashp1i.4 (𝑀 + 1) = 𝑁
Assertion
Ref Expression
hashp1i (♯‘𝐵) = 𝑁

Proof of Theorem hashp1i
StepHypRef Expression
1 hashp1i.2 . . . 4 𝐵 = suc 𝐴
2 df-suc 4356 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
31, 2eqtri 2191 . . 3 𝐵 = (𝐴 ∪ {𝐴})
43fveq2i 5499 . 2 (♯‘𝐵) = (♯‘(𝐴 ∪ {𝐴}))
5 hashp1i.1 . . . . 5 𝐴 ∈ ω
6 nnfi 6850 . . . . 5 (𝐴 ∈ ω → 𝐴 ∈ Fin)
75, 6ax-mp 5 . . . 4 𝐴 ∈ Fin
8 nnord 4596 . . . . 5 (𝐴 ∈ ω → Ord 𝐴)
9 ordirr 4526 . . . . 5 (Ord 𝐴 → ¬ 𝐴𝐴)
105, 8, 9mp2b 8 . . . 4 ¬ 𝐴𝐴
11 hashunsng 10742 . . . . 5 (𝐴 ∈ ω → ((𝐴 ∈ Fin ∧ ¬ 𝐴𝐴) → (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1)))
125, 11ax-mp 5 . . . 4 ((𝐴 ∈ Fin ∧ ¬ 𝐴𝐴) → (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1))
137, 10, 12mp2an 424 . . 3 (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1)
14 hashp1i.3 . . . . 5 (♯‘𝐴) = 𝑀
1514oveq1i 5863 . . . 4 ((♯‘𝐴) + 1) = (𝑀 + 1)
16 hashp1i.4 . . . 4 (𝑀 + 1) = 𝑁
1715, 16eqtri 2191 . . 3 ((♯‘𝐴) + 1) = 𝑁
1813, 17eqtri 2191 . 2 (♯‘(𝐴 ∪ {𝐴})) = 𝑁
194, 18eqtri 2191 1 (♯‘𝐵) = 𝑁
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1348  wcel 2141  cun 3119  {csn 3583  Ord word 4347  suc csuc 4350  ωcom 4574  cfv 5198  (class class class)co 5853  Fincfn 6718  1c1 7775   + caddc 7777  chash 10709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-ihash 10710
This theorem is referenced by:  hash1  10746  hash2  10747  hash3  10748  hash4  10749
  Copyright terms: Public domain W3C validator