ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashp1i GIF version

Theorem hashp1i 10792
Description: Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
Hypotheses
Ref Expression
hashp1i.1 𝐴 ∈ ω
hashp1i.2 𝐵 = suc 𝐴
hashp1i.3 (♯‘𝐴) = 𝑀
hashp1i.4 (𝑀 + 1) = 𝑁
Assertion
Ref Expression
hashp1i (♯‘𝐵) = 𝑁

Proof of Theorem hashp1i
StepHypRef Expression
1 hashp1i.2 . . . 4 𝐵 = suc 𝐴
2 df-suc 4373 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
31, 2eqtri 2198 . . 3 𝐵 = (𝐴 ∪ {𝐴})
43fveq2i 5520 . 2 (♯‘𝐵) = (♯‘(𝐴 ∪ {𝐴}))
5 hashp1i.1 . . . . 5 𝐴 ∈ ω
6 nnfi 6874 . . . . 5 (𝐴 ∈ ω → 𝐴 ∈ Fin)
75, 6ax-mp 5 . . . 4 𝐴 ∈ Fin
8 nnord 4613 . . . . 5 (𝐴 ∈ ω → Ord 𝐴)
9 ordirr 4543 . . . . 5 (Ord 𝐴 → ¬ 𝐴𝐴)
105, 8, 9mp2b 8 . . . 4 ¬ 𝐴𝐴
11 hashunsng 10789 . . . . 5 (𝐴 ∈ ω → ((𝐴 ∈ Fin ∧ ¬ 𝐴𝐴) → (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1)))
125, 11ax-mp 5 . . . 4 ((𝐴 ∈ Fin ∧ ¬ 𝐴𝐴) → (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1))
137, 10, 12mp2an 426 . . 3 (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1)
14 hashp1i.3 . . . . 5 (♯‘𝐴) = 𝑀
1514oveq1i 5887 . . . 4 ((♯‘𝐴) + 1) = (𝑀 + 1)
16 hashp1i.4 . . . 4 (𝑀 + 1) = 𝑁
1715, 16eqtri 2198 . . 3 ((♯‘𝐴) + 1) = 𝑁
1813, 17eqtri 2198 . 2 (♯‘(𝐴 ∪ {𝐴})) = 𝑁
194, 18eqtri 2198 1 (♯‘𝐵) = 𝑁
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1353  wcel 2148  cun 3129  {csn 3594  Ord word 4364  suc csuc 4367  ωcom 4591  cfv 5218  (class class class)co 5877  Fincfn 6742  1c1 7814   + caddc 7816  chash 10757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011  df-ihash 10758
This theorem is referenced by:  hash1  10793  hash2  10794  hash3  10795  hash4  10796
  Copyright terms: Public domain W3C validator