![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hashp1i | GIF version |
Description: Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
hashp1i.1 | ⊢ 𝐴 ∈ ω |
hashp1i.2 | ⊢ 𝐵 = suc 𝐴 |
hashp1i.3 | ⊢ (♯‘𝐴) = 𝑀 |
hashp1i.4 | ⊢ (𝑀 + 1) = 𝑁 |
Ref | Expression |
---|---|
hashp1i | ⊢ (♯‘𝐵) = 𝑁 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashp1i.2 | . . . 4 ⊢ 𝐵 = suc 𝐴 | |
2 | df-suc 4373 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
3 | 1, 2 | eqtri 2198 | . . 3 ⊢ 𝐵 = (𝐴 ∪ {𝐴}) |
4 | 3 | fveq2i 5520 | . 2 ⊢ (♯‘𝐵) = (♯‘(𝐴 ∪ {𝐴})) |
5 | hashp1i.1 | . . . . 5 ⊢ 𝐴 ∈ ω | |
6 | nnfi 6874 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ 𝐴 ∈ Fin |
8 | nnord 4613 | . . . . 5 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
9 | ordirr 4543 | . . . . 5 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
10 | 5, 8, 9 | mp2b 8 | . . . 4 ⊢ ¬ 𝐴 ∈ 𝐴 |
11 | hashunsng 10789 | . . . . 5 ⊢ (𝐴 ∈ ω → ((𝐴 ∈ Fin ∧ ¬ 𝐴 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1))) | |
12 | 5, 11 | ax-mp 5 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐴 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1)) |
13 | 7, 10, 12 | mp2an 426 | . . 3 ⊢ (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1) |
14 | hashp1i.3 | . . . . 5 ⊢ (♯‘𝐴) = 𝑀 | |
15 | 14 | oveq1i 5887 | . . . 4 ⊢ ((♯‘𝐴) + 1) = (𝑀 + 1) |
16 | hashp1i.4 | . . . 4 ⊢ (𝑀 + 1) = 𝑁 | |
17 | 15, 16 | eqtri 2198 | . . 3 ⊢ ((♯‘𝐴) + 1) = 𝑁 |
18 | 13, 17 | eqtri 2198 | . 2 ⊢ (♯‘(𝐴 ∪ {𝐴})) = 𝑁 |
19 | 4, 18 | eqtri 2198 | 1 ⊢ (♯‘𝐵) = 𝑁 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∪ cun 3129 {csn 3594 Ord word 4364 suc csuc 4367 ωcom 4591 ‘cfv 5218 (class class class)co 5877 Fincfn 6742 1c1 7814 + caddc 7816 ♯chash 10757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-frec 6394 df-1o 6419 df-oadd 6423 df-er 6537 df-en 6743 df-dom 6744 df-fin 6745 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 df-fz 10011 df-ihash 10758 |
This theorem is referenced by: hash1 10793 hash2 10794 hash3 10795 hash4 10796 |
Copyright terms: Public domain | W3C validator |