Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hashp1i | GIF version |
Description: Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
hashp1i.1 | ⊢ 𝐴 ∈ ω |
hashp1i.2 | ⊢ 𝐵 = suc 𝐴 |
hashp1i.3 | ⊢ (♯‘𝐴) = 𝑀 |
hashp1i.4 | ⊢ (𝑀 + 1) = 𝑁 |
Ref | Expression |
---|---|
hashp1i | ⊢ (♯‘𝐵) = 𝑁 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashp1i.2 | . . . 4 ⊢ 𝐵 = suc 𝐴 | |
2 | df-suc 4333 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
3 | 1, 2 | eqtri 2178 | . . 3 ⊢ 𝐵 = (𝐴 ∪ {𝐴}) |
4 | 3 | fveq2i 5473 | . 2 ⊢ (♯‘𝐵) = (♯‘(𝐴 ∪ {𝐴})) |
5 | hashp1i.1 | . . . . 5 ⊢ 𝐴 ∈ ω | |
6 | nnfi 6819 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ 𝐴 ∈ Fin |
8 | nnord 4573 | . . . . 5 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
9 | ordirr 4503 | . . . . 5 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
10 | 5, 8, 9 | mp2b 8 | . . . 4 ⊢ ¬ 𝐴 ∈ 𝐴 |
11 | hashunsng 10692 | . . . . 5 ⊢ (𝐴 ∈ ω → ((𝐴 ∈ Fin ∧ ¬ 𝐴 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1))) | |
12 | 5, 11 | ax-mp 5 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐴 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1)) |
13 | 7, 10, 12 | mp2an 423 | . . 3 ⊢ (♯‘(𝐴 ∪ {𝐴})) = ((♯‘𝐴) + 1) |
14 | hashp1i.3 | . . . . 5 ⊢ (♯‘𝐴) = 𝑀 | |
15 | 14 | oveq1i 5836 | . . . 4 ⊢ ((♯‘𝐴) + 1) = (𝑀 + 1) |
16 | hashp1i.4 | . . . 4 ⊢ (𝑀 + 1) = 𝑁 | |
17 | 15, 16 | eqtri 2178 | . . 3 ⊢ ((♯‘𝐴) + 1) = 𝑁 |
18 | 13, 17 | eqtri 2178 | . 2 ⊢ (♯‘(𝐴 ∪ {𝐴})) = 𝑁 |
19 | 4, 18 | eqtri 2178 | 1 ⊢ (♯‘𝐵) = 𝑁 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 ∪ cun 3100 {csn 3561 Ord word 4324 suc csuc 4327 ωcom 4551 ‘cfv 5172 (class class class)co 5826 Fincfn 6687 1c1 7735 + caddc 7737 ♯chash 10660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4081 ax-sep 4084 ax-nul 4092 ax-pow 4137 ax-pr 4171 ax-un 4395 ax-setind 4498 ax-iinf 4549 ax-cnex 7825 ax-resscn 7826 ax-1cn 7827 ax-1re 7828 ax-icn 7829 ax-addcl 7830 ax-addrcl 7831 ax-mulcl 7832 ax-addcom 7834 ax-addass 7836 ax-distr 7838 ax-i2m1 7839 ax-0lt1 7840 ax-0id 7842 ax-rnegex 7843 ax-cnre 7845 ax-pre-ltirr 7846 ax-pre-ltwlin 7847 ax-pre-lttrn 7848 ax-pre-apti 7849 ax-pre-ltadd 7850 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3396 df-if 3507 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-iun 3853 df-br 3968 df-opab 4028 df-mpt 4029 df-tr 4065 df-id 4255 df-iord 4328 df-on 4330 df-ilim 4331 df-suc 4333 df-iom 4552 df-xp 4594 df-rel 4595 df-cnv 4596 df-co 4597 df-dm 4598 df-rn 4599 df-res 4600 df-ima 4601 df-iota 5137 df-fun 5174 df-fn 5175 df-f 5176 df-f1 5177 df-fo 5178 df-f1o 5179 df-fv 5180 df-riota 5782 df-ov 5829 df-oprab 5830 df-mpo 5831 df-1st 6090 df-2nd 6091 df-recs 6254 df-irdg 6319 df-frec 6340 df-1o 6365 df-oadd 6369 df-er 6482 df-en 6688 df-dom 6689 df-fin 6690 df-pnf 7916 df-mnf 7917 df-xr 7918 df-ltxr 7919 df-le 7920 df-sub 8052 df-neg 8053 df-inn 8839 df-n0 9096 df-z 9173 df-uz 9445 df-fz 9919 df-ihash 10661 |
This theorem is referenced by: hash1 10696 hash2 10697 hash3 10698 hash4 10699 |
Copyright terms: Public domain | W3C validator |