ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfi GIF version

Theorem unsnfi 6800
Description: Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.)
Assertion
Ref Expression
unsnfi ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin)

Proof of Theorem unsnfi
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6648 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
323ad2ant1 1002 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → ∃𝑛 ∈ ω 𝐴𝑛)
4 peano2 4504 . . . . 5 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
54ad2antrl 481 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛 ∈ ω)
6 simprr 521 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
7 simpl2 985 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐵𝑉)
8 simprl 520 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝑛 ∈ ω)
9 en2sn 6700 . . . . . . 7 ((𝐵𝑉𝑛 ∈ ω) → {𝐵} ≈ {𝑛})
107, 8, 9syl2anc 408 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → {𝐵} ≈ {𝑛})
11 disjsn 3580 . . . . . . . . 9 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
1211biimpri 132 . . . . . . . 8 𝐵𝐴 → (𝐴 ∩ {𝐵}) = ∅)
13123ad2ant3 1004 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∩ {𝐵}) = ∅)
1413adantr 274 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∩ {𝐵}) = ∅)
15 nnord 4520 . . . . . . . . 9 (𝑛 ∈ ω → Ord 𝑛)
16 ordirr 4452 . . . . . . . . 9 (Ord 𝑛 → ¬ 𝑛𝑛)
1715, 16syl 14 . . . . . . . 8 (𝑛 ∈ ω → ¬ 𝑛𝑛)
18 disjsn 3580 . . . . . . . 8 ((𝑛 ∩ {𝑛}) = ∅ ↔ ¬ 𝑛𝑛)
1917, 18sylibr 133 . . . . . . 7 (𝑛 ∈ ω → (𝑛 ∩ {𝑛}) = ∅)
2019ad2antrl 481 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝑛 ∩ {𝑛}) = ∅)
21 unen 6703 . . . . . 6 (((𝐴𝑛 ∧ {𝐵} ≈ {𝑛}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ (𝑛 ∩ {𝑛}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ (𝑛 ∪ {𝑛}))
226, 10, 14, 20, 21syl22anc 1217 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∪ {𝐵}) ≈ (𝑛 ∪ {𝑛}))
23 df-suc 4288 . . . . 5 suc 𝑛 = (𝑛 ∪ {𝑛})
2422, 23breqtrrdi 3965 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑛)
25 breq2 3928 . . . . 5 (𝑚 = suc 𝑛 → ((𝐴 ∪ {𝐵}) ≈ 𝑚 ↔ (𝐴 ∪ {𝐵}) ≈ suc 𝑛))
2625rspcev 2784 . . . 4 ((suc 𝑛 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ suc 𝑛) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
275, 24, 26syl2anc 408 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
28 isfi 6648 . . 3 ((𝐴 ∪ {𝐵}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
2927, 28sylibr 133 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∪ {𝐵}) ∈ Fin)
303, 29rexlimddv 2552 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  wrex 2415  cun 3064  cin 3065  c0 3358  {csn 3522   class class class wbr 3924  Ord word 4279  suc csuc 4282  ωcom 4499  cen 6625  Fincfn 6627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-1o 6306  df-er 6422  df-en 6628  df-fin 6630
This theorem is referenced by:  unfidisj  6803  fisseneq  6813  ssfirab  6815  fnfi  6818  fidcenumlemr  6836  fsumsplitsn  11172  fsumabs  11227  fsumiun  11239  fsumcncntop  12714
  Copyright terms: Public domain W3C validator