ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfi GIF version

Theorem unsnfi 6775
Description: Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.)
Assertion
Ref Expression
unsnfi ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin)

Proof of Theorem unsnfi
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6623 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
323ad2ant1 987 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → ∃𝑛 ∈ ω 𝐴𝑛)
4 peano2 4479 . . . . 5 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
54ad2antrl 481 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛 ∈ ω)
6 simprr 506 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
7 simpl2 970 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐵𝑉)
8 simprl 505 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝑛 ∈ ω)
9 en2sn 6675 . . . . . . 7 ((𝐵𝑉𝑛 ∈ ω) → {𝐵} ≈ {𝑛})
107, 8, 9syl2anc 408 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → {𝐵} ≈ {𝑛})
11 disjsn 3555 . . . . . . . . 9 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
1211biimpri 132 . . . . . . . 8 𝐵𝐴 → (𝐴 ∩ {𝐵}) = ∅)
13123ad2ant3 989 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∩ {𝐵}) = ∅)
1413adantr 274 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∩ {𝐵}) = ∅)
15 nnord 4495 . . . . . . . . 9 (𝑛 ∈ ω → Ord 𝑛)
16 ordirr 4427 . . . . . . . . 9 (Ord 𝑛 → ¬ 𝑛𝑛)
1715, 16syl 14 . . . . . . . 8 (𝑛 ∈ ω → ¬ 𝑛𝑛)
18 disjsn 3555 . . . . . . . 8 ((𝑛 ∩ {𝑛}) = ∅ ↔ ¬ 𝑛𝑛)
1917, 18sylibr 133 . . . . . . 7 (𝑛 ∈ ω → (𝑛 ∩ {𝑛}) = ∅)
2019ad2antrl 481 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝑛 ∩ {𝑛}) = ∅)
21 unen 6678 . . . . . 6 (((𝐴𝑛 ∧ {𝐵} ≈ {𝑛}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ (𝑛 ∩ {𝑛}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ (𝑛 ∪ {𝑛}))
226, 10, 14, 20, 21syl22anc 1202 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∪ {𝐵}) ≈ (𝑛 ∪ {𝑛}))
23 df-suc 4263 . . . . 5 suc 𝑛 = (𝑛 ∪ {𝑛})
2422, 23breqtrrdi 3940 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑛)
25 breq2 3903 . . . . 5 (𝑚 = suc 𝑛 → ((𝐴 ∪ {𝐵}) ≈ 𝑚 ↔ (𝐴 ∪ {𝐵}) ≈ suc 𝑛))
2625rspcev 2763 . . . 4 ((suc 𝑛 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ suc 𝑛) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
275, 24, 26syl2anc 408 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
28 isfi 6623 . . 3 ((𝐴 ∪ {𝐵}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
2927, 28sylibr 133 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∪ {𝐵}) ∈ Fin)
303, 29rexlimddv 2531 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3a 947   = wceq 1316  wcel 1465  wrex 2394  cun 3039  cin 3040  c0 3333  {csn 3497   class class class wbr 3899  Ord word 4254  suc csuc 4257  ωcom 4474  cen 6600  Fincfn 6602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-v 2662  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-1o 6281  df-er 6397  df-en 6603  df-fin 6605
This theorem is referenced by:  unfidisj  6778  fisseneq  6788  ssfirab  6790  fnfi  6793  fidcenumlemr  6811  fsumsplitsn  11134  fsumabs  11189  fsumiun  11201  fsumcncntop  12636
  Copyright terms: Public domain W3C validator