ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfi GIF version

Theorem unsnfi 6815
Description: Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.)
Assertion
Ref Expression
unsnfi ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin)

Proof of Theorem unsnfi
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6663 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
323ad2ant1 1003 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → ∃𝑛 ∈ ω 𝐴𝑛)
4 peano2 4517 . . . . 5 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
54ad2antrl 482 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛 ∈ ω)
6 simprr 522 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
7 simpl2 986 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐵𝑉)
8 simprl 521 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝑛 ∈ ω)
9 en2sn 6715 . . . . . . 7 ((𝐵𝑉𝑛 ∈ ω) → {𝐵} ≈ {𝑛})
107, 8, 9syl2anc 409 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → {𝐵} ≈ {𝑛})
11 disjsn 3593 . . . . . . . . 9 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
1211biimpri 132 . . . . . . . 8 𝐵𝐴 → (𝐴 ∩ {𝐵}) = ∅)
13123ad2ant3 1005 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∩ {𝐵}) = ∅)
1413adantr 274 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∩ {𝐵}) = ∅)
15 nnord 4533 . . . . . . . . 9 (𝑛 ∈ ω → Ord 𝑛)
16 ordirr 4465 . . . . . . . . 9 (Ord 𝑛 → ¬ 𝑛𝑛)
1715, 16syl 14 . . . . . . . 8 (𝑛 ∈ ω → ¬ 𝑛𝑛)
18 disjsn 3593 . . . . . . . 8 ((𝑛 ∩ {𝑛}) = ∅ ↔ ¬ 𝑛𝑛)
1917, 18sylibr 133 . . . . . . 7 (𝑛 ∈ ω → (𝑛 ∩ {𝑛}) = ∅)
2019ad2antrl 482 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝑛 ∩ {𝑛}) = ∅)
21 unen 6718 . . . . . 6 (((𝐴𝑛 ∧ {𝐵} ≈ {𝑛}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ (𝑛 ∩ {𝑛}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ (𝑛 ∪ {𝑛}))
226, 10, 14, 20, 21syl22anc 1218 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∪ {𝐵}) ≈ (𝑛 ∪ {𝑛}))
23 df-suc 4301 . . . . 5 suc 𝑛 = (𝑛 ∪ {𝑛})
2422, 23breqtrrdi 3978 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑛)
25 breq2 3941 . . . . 5 (𝑚 = suc 𝑛 → ((𝐴 ∪ {𝐵}) ≈ 𝑚 ↔ (𝐴 ∪ {𝐵}) ≈ suc 𝑛))
2625rspcev 2793 . . . 4 ((suc 𝑛 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ suc 𝑛) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
275, 24, 26syl2anc 409 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
28 isfi 6663 . . 3 ((𝐴 ∪ {𝐵}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
2927, 28sylibr 133 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∪ {𝐵}) ∈ Fin)
303, 29rexlimddv 2557 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3a 963   = wceq 1332  wcel 1481  wrex 2418  cun 3074  cin 3075  c0 3368  {csn 3532   class class class wbr 3937  Ord word 4292  suc csuc 4295  ωcom 4512  cen 6640  Fincfn 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-1o 6321  df-er 6437  df-en 6643  df-fin 6645
This theorem is referenced by:  unfidisj  6818  fisseneq  6828  ssfirab  6830  fnfi  6833  fidcenumlemr  6851  fsumsplitsn  11211  fsumabs  11266  fsumiun  11278  fsumcncntop  12764
  Copyright terms: Public domain W3C validator