ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfi GIF version

Theorem unsnfi 6912
Description: Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.)
Assertion
Ref Expression
unsnfi ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin)

Proof of Theorem unsnfi
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6755 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 120 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
323ad2ant1 1018 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → ∃𝑛 ∈ ω 𝐴𝑛)
4 peano2 4591 . . . . 5 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
54ad2antrl 490 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛 ∈ ω)
6 simprr 531 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
7 simpl2 1001 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐵𝑉)
8 simprl 529 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝑛 ∈ ω)
9 en2sn 6807 . . . . . . 7 ((𝐵𝑉𝑛 ∈ ω) → {𝐵} ≈ {𝑛})
107, 8, 9syl2anc 411 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → {𝐵} ≈ {𝑛})
11 disjsn 3653 . . . . . . . . 9 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
1211biimpri 133 . . . . . . . 8 𝐵𝐴 → (𝐴 ∩ {𝐵}) = ∅)
13123ad2ant3 1020 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∩ {𝐵}) = ∅)
1413adantr 276 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∩ {𝐵}) = ∅)
15 nnord 4608 . . . . . . . . 9 (𝑛 ∈ ω → Ord 𝑛)
16 ordirr 4538 . . . . . . . . 9 (Ord 𝑛 → ¬ 𝑛𝑛)
1715, 16syl 14 . . . . . . . 8 (𝑛 ∈ ω → ¬ 𝑛𝑛)
18 disjsn 3653 . . . . . . . 8 ((𝑛 ∩ {𝑛}) = ∅ ↔ ¬ 𝑛𝑛)
1917, 18sylibr 134 . . . . . . 7 (𝑛 ∈ ω → (𝑛 ∩ {𝑛}) = ∅)
2019ad2antrl 490 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝑛 ∩ {𝑛}) = ∅)
21 unen 6810 . . . . . 6 (((𝐴𝑛 ∧ {𝐵} ≈ {𝑛}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ (𝑛 ∩ {𝑛}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ (𝑛 ∪ {𝑛}))
226, 10, 14, 20, 21syl22anc 1239 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∪ {𝐵}) ≈ (𝑛 ∪ {𝑛}))
23 df-suc 4368 . . . . 5 suc 𝑛 = (𝑛 ∪ {𝑛})
2422, 23breqtrrdi 4042 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑛)
25 breq2 4004 . . . . 5 (𝑚 = suc 𝑛 → ((𝐴 ∪ {𝐵}) ≈ 𝑚 ↔ (𝐴 ∪ {𝐵}) ≈ suc 𝑛))
2625rspcev 2841 . . . 4 ((suc 𝑛 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ suc 𝑛) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
275, 24, 26syl2anc 411 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
28 isfi 6755 . . 3 ((𝐴 ∪ {𝐵}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
2927, 28sylibr 134 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∪ {𝐵}) ∈ Fin)
303, 29rexlimddv 2599 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  wrex 2456  cun 3127  cin 3128  c0 3422  {csn 3591   class class class wbr 4000  Ord word 4359  suc csuc 4362  ωcom 4586  cen 6732  Fincfn 6734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-1o 6411  df-er 6529  df-en 6735  df-fin 6737
This theorem is referenced by:  unfidisj  6915  fisseneq  6925  ssfirab  6927  fnfi  6930  fidcenumlemr  6948  fsumsplitsn  11402  fsumabs  11457  fsumiun  11469  fprodunsn  11596  fprod2dlemstep  11614  fsumcncntop  13723
  Copyright terms: Public domain W3C validator