| Step | Hyp | Ref
| Expression |
| 1 | | isfi 6820 |
. . . 4
⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 2 | 1 | biimpi 120 |
. . 3
⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 3 | 2 | 3ad2ant1 1020 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 4 | | peano2 4631 |
. . . . 5
⊢ (𝑛 ∈ ω → suc 𝑛 ∈
ω) |
| 5 | 4 | ad2antrl 490 |
. . . 4
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → suc 𝑛 ∈ ω) |
| 6 | | simprr 531 |
. . . . . 6
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐴 ≈ 𝑛) |
| 7 | | simpl2 1003 |
. . . . . . 7
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐵 ∈ 𝑉) |
| 8 | | simprl 529 |
. . . . . . 7
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝑛 ∈ ω) |
| 9 | | en2sn 6872 |
. . . . . . 7
⊢ ((𝐵 ∈ 𝑉 ∧ 𝑛 ∈ ω) → {𝐵} ≈ {𝑛}) |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . . 6
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → {𝐵} ≈ {𝑛}) |
| 11 | | disjsn 3684 |
. . . . . . . . 9
⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) |
| 12 | 11 | biimpri 133 |
. . . . . . . 8
⊢ (¬
𝐵 ∈ 𝐴 → (𝐴 ∩ {𝐵}) = ∅) |
| 13 | 12 | 3ad2ant3 1022 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) → (𝐴 ∩ {𝐵}) = ∅) |
| 14 | 13 | adantr 276 |
. . . . . 6
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 ∩ {𝐵}) = ∅) |
| 15 | | nnord 4648 |
. . . . . . . . 9
⊢ (𝑛 ∈ ω → Ord 𝑛) |
| 16 | | ordirr 4578 |
. . . . . . . . 9
⊢ (Ord
𝑛 → ¬ 𝑛 ∈ 𝑛) |
| 17 | 15, 16 | syl 14 |
. . . . . . . 8
⊢ (𝑛 ∈ ω → ¬
𝑛 ∈ 𝑛) |
| 18 | | disjsn 3684 |
. . . . . . . 8
⊢ ((𝑛 ∩ {𝑛}) = ∅ ↔ ¬ 𝑛 ∈ 𝑛) |
| 19 | 17, 18 | sylibr 134 |
. . . . . . 7
⊢ (𝑛 ∈ ω → (𝑛 ∩ {𝑛}) = ∅) |
| 20 | 19 | ad2antrl 490 |
. . . . . 6
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝑛 ∩ {𝑛}) = ∅) |
| 21 | | unen 6875 |
. . . . . 6
⊢ (((𝐴 ≈ 𝑛 ∧ {𝐵} ≈ {𝑛}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ (𝑛 ∩ {𝑛}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ (𝑛 ∪ {𝑛})) |
| 22 | 6, 10, 14, 20, 21 | syl22anc 1250 |
. . . . 5
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 ∪ {𝐵}) ≈ (𝑛 ∪ {𝑛})) |
| 23 | | df-suc 4406 |
. . . . 5
⊢ suc 𝑛 = (𝑛 ∪ {𝑛}) |
| 24 | 22, 23 | breqtrrdi 4075 |
. . . 4
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑛) |
| 25 | | breq2 4037 |
. . . . 5
⊢ (𝑚 = suc 𝑛 → ((𝐴 ∪ {𝐵}) ≈ 𝑚 ↔ (𝐴 ∪ {𝐵}) ≈ suc 𝑛)) |
| 26 | 25 | rspcev 2868 |
. . . 4
⊢ ((suc
𝑛 ∈ ω ∧
(𝐴 ∪ {𝐵}) ≈ suc 𝑛) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚) |
| 27 | 5, 24, 26 | syl2anc 411 |
. . 3
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚) |
| 28 | | isfi 6820 |
. . 3
⊢ ((𝐴 ∪ {𝐵}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚) |
| 29 | 27, 28 | sylibr 134 |
. 2
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 ∪ {𝐵}) ∈ Fin) |
| 30 | 3, 29 | rexlimddv 2619 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin) |