![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ringass | GIF version |
Description: Associative law for multiplication in a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ringcl.b | ⊢ 𝐵 = (Base‘𝑅) |
ringcl.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
ringass | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | 1 | ringmgp 13008 | . . . 4 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
3 | 2 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (mulGrp‘𝑅) ∈ Mnd) |
4 | simpr1 1003 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
5 | ringcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 1, 5 | mgpbasg 12960 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅))) |
7 | 6 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐵 = (Base‘(mulGrp‘𝑅))) |
8 | 4, 7 | eleqtrd 2256 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ (Base‘(mulGrp‘𝑅))) |
9 | simpr2 1004 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
10 | 9, 7 | eleqtrd 2256 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ (Base‘(mulGrp‘𝑅))) |
11 | simpr3 1005 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
12 | 11, 7 | eleqtrd 2256 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ (Base‘(mulGrp‘𝑅))) |
13 | eqid 2177 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
14 | eqid 2177 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
15 | 13, 14 | mndass 12714 | . . 3 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ (𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑍 ∈ (Base‘(mulGrp‘𝑅)))) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))) |
16 | 3, 8, 10, 12, 15 | syl13anc 1240 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))) |
17 | ringcl.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
18 | 1, 17 | mgpplusgg 12958 | . . . 4 ⊢ (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅))) |
19 | 18 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → · = (+g‘(mulGrp‘𝑅))) |
20 | 19 | oveqd 5886 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌)) |
21 | eqidd 2178 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 = 𝑍) | |
22 | 19, 20, 21 | oveq123d 5890 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌) · 𝑍) = ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍)) |
23 | eqidd 2178 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 = 𝑋) | |
24 | 19 | oveqd 5886 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 · 𝑍) = (𝑌(+g‘(mulGrp‘𝑅))𝑍)) |
25 | 19, 23, 24 | oveq123d 5890 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · (𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))) |
26 | 16, 22, 25 | 3eqtr4d 2220 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ‘cfv 5212 (class class class)co 5869 Basecbs 12442 +gcplusg 12515 .rcmulr 12516 Mndcmnd 12706 mulGrpcmgp 12954 Ringcrg 13002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4118 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-cnex 7890 ax-resscn 7891 ax-1cn 7892 ax-1re 7893 ax-icn 7894 ax-addcl 7895 ax-addrcl 7896 ax-mulcl 7897 ax-addcom 7899 ax-addass 7901 ax-i2m1 7904 ax-0lt1 7905 ax-0id 7907 ax-rnegex 7908 ax-pre-ltirr 7911 ax-pre-ltadd 7915 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-br 4001 df-opab 4062 df-mpt 4063 df-id 4290 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-iota 5174 df-fun 5214 df-fn 5215 df-fv 5220 df-ov 5872 df-oprab 5873 df-mpo 5874 df-pnf 7981 df-mnf 7982 df-ltxr 7984 df-inn 8906 df-2 8964 df-3 8965 df-ndx 12445 df-slot 12446 df-base 12448 df-sets 12449 df-plusg 12528 df-mulr 12529 df-sgrp 12697 df-mnd 12707 df-mgp 12955 df-ring 13004 |
This theorem is referenced by: ringinvnzdiv 13050 ringmneg1 13053 ringmneg2 13054 opprring 13071 dvdsrtr 13092 dvdsrmul1 13093 unitgrp 13107 dvrass 13130 dvrcan1 13131 |
Copyright terms: Public domain | W3C validator |