| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringass | GIF version | ||
| Description: Associative law for multiplication in a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ringcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringcl.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| ringass | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | 1 | ringmgp 13636 | . . . 4 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 3 | 2 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (mulGrp‘𝑅) ∈ Mnd) |
| 4 | simpr1 1005 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 5 | ringcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 1, 5 | mgpbasg 13560 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 7 | 6 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 8 | 4, 7 | eleqtrd 2275 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ (Base‘(mulGrp‘𝑅))) |
| 9 | simpr2 1006 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 10 | 9, 7 | eleqtrd 2275 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ (Base‘(mulGrp‘𝑅))) |
| 11 | simpr3 1007 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
| 12 | 11, 7 | eleqtrd 2275 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ (Base‘(mulGrp‘𝑅))) |
| 13 | eqid 2196 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
| 14 | eqid 2196 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
| 15 | 13, 14 | mndass 13128 | . . 3 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ (𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑍 ∈ (Base‘(mulGrp‘𝑅)))) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))) |
| 16 | 3, 8, 10, 12, 15 | syl13anc 1251 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))) |
| 17 | ringcl.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 18 | 1, 17 | mgpplusgg 13558 | . . . 4 ⊢ (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅))) |
| 19 | 18 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → · = (+g‘(mulGrp‘𝑅))) |
| 20 | 19 | oveqd 5942 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌)) |
| 21 | eqidd 2197 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 = 𝑍) | |
| 22 | 19, 20, 21 | oveq123d 5946 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌) · 𝑍) = ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍)) |
| 23 | eqidd 2197 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 = 𝑋) | |
| 24 | 19 | oveqd 5942 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 · 𝑍) = (𝑌(+g‘(mulGrp‘𝑅))𝑍)) |
| 25 | 19, 23, 24 | oveq123d 5946 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · (𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))) |
| 26 | 16, 22, 25 | 3eqtr4d 2239 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 (class class class)co 5925 Basecbs 12705 +gcplusg 12782 .rcmulr 12783 Mndcmnd 13120 mulGrpcmgp 13554 Ringcrg 13630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-pre-ltirr 8010 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-ltxr 8085 df-inn 9010 df-2 9068 df-3 9069 df-ndx 12708 df-slot 12709 df-base 12711 df-sets 12712 df-plusg 12795 df-mulr 12796 df-sgrp 13106 df-mnd 13121 df-mgp 13555 df-ring 13632 |
| This theorem is referenced by: ringinvnzdiv 13684 ringmneg1 13687 ringmneg2 13688 ringressid 13697 imasring 13698 opprring 13713 dvdsrtr 13735 dvdsrmul1 13736 unitgrp 13750 dvrass 13773 dvrcan1 13774 rdivmuldivd 13778 subrginv 13871 issubrg2 13875 unitrrg 13901 sralmod 14084 |
| Copyright terms: Public domain | W3C validator |