ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringass GIF version

Theorem ringass 13778
Description: Associative law for multiplication in a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ringcl.b 𝐵 = (Base‘𝑅)
ringcl.t · = (.r𝑅)
Assertion
Ref Expression
ringass ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))

Proof of Theorem ringass
StepHypRef Expression
1 eqid 2205 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21ringmgp 13764 . . . 4 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
32adantr 276 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (mulGrp‘𝑅) ∈ Mnd)
4 simpr1 1006 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
5 ringcl.b . . . . . 6 𝐵 = (Base‘𝑅)
61, 5mgpbasg 13688 . . . . 5 (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅)))
76adantr 276 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐵 = (Base‘(mulGrp‘𝑅)))
84, 7eleqtrd 2284 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋 ∈ (Base‘(mulGrp‘𝑅)))
9 simpr2 1007 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
109, 7eleqtrd 2284 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌 ∈ (Base‘(mulGrp‘𝑅)))
11 simpr3 1008 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
1211, 7eleqtrd 2284 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍 ∈ (Base‘(mulGrp‘𝑅)))
13 eqid 2205 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
14 eqid 2205 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
1513, 14mndass 13256 . . 3 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑍 ∈ (Base‘(mulGrp‘𝑅)))) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
163, 8, 10, 12, 15syl13anc 1252 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
17 ringcl.t . . . . 5 · = (.r𝑅)
181, 17mgpplusgg 13686 . . . 4 (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅)))
1918adantr 276 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → · = (+g‘(mulGrp‘𝑅)))
2019oveqd 5961 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌))
21 eqidd 2206 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍 = 𝑍)
2219, 20, 21oveq123d 5965 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍))
23 eqidd 2206 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋 = 𝑋)
2419oveqd 5961 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 · 𝑍) = (𝑌(+g‘(mulGrp‘𝑅))𝑍))
2519, 23, 24oveq123d 5965 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
2616, 22, 253eqtr4d 2248 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2176  cfv 5271  (class class class)co 5944  Basecbs 12832  +gcplusg 12909  .rcmulr 12910  Mndcmnd 13248  mulGrpcmgp 13682  Ringcrg 13758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-sgrp 13234  df-mnd 13249  df-mgp 13683  df-ring 13760
This theorem is referenced by:  ringinvnzdiv  13812  ringmneg1  13815  ringmneg2  13816  ringressid  13825  imasring  13826  opprring  13841  dvdsrtr  13863  dvdsrmul1  13864  unitgrp  13878  dvrass  13901  dvrcan1  13902  rdivmuldivd  13906  subrginv  13999  issubrg2  14003  unitrrg  14029  sralmod  14212
  Copyright terms: Public domain W3C validator