Proof of Theorem ringass
Step | Hyp | Ref
| Expression |
1 | | eqid 2175 |
. . . . 5
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
2 | 1 | ringmgp 12978 |
. . . 4
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
3 | 2 | adantr 276 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (mulGrp‘𝑅) ∈ Mnd) |
4 | | simpr1 1003 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
5 | | ringcl.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
6 | 1, 5 | mgpbasg 12930 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝐵 =
(Base‘(mulGrp‘𝑅))) |
7 | 6 | adantr 276 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐵 = (Base‘(mulGrp‘𝑅))) |
8 | 4, 7 | eleqtrd 2254 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ (Base‘(mulGrp‘𝑅))) |
9 | | simpr2 1004 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
10 | 9, 7 | eleqtrd 2254 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ (Base‘(mulGrp‘𝑅))) |
11 | | simpr3 1005 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) |
12 | 11, 7 | eleqtrd 2254 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ (Base‘(mulGrp‘𝑅))) |
13 | | eqid 2175 |
. . . 4
⊢
(Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) |
14 | | eqid 2175 |
. . . 4
⊢
(+g‘(mulGrp‘𝑅)) =
(+g‘(mulGrp‘𝑅)) |
15 | 13, 14 | mndass 12690 |
. . 3
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ (𝑋 ∈
(Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑍 ∈ (Base‘(mulGrp‘𝑅)))) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))) |
16 | 3, 8, 10, 12, 15 | syl13anc 1240 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))) |
17 | | ringcl.t |
. . . . 5
⊢ · =
(.r‘𝑅) |
18 | 1, 17 | mgpplusgg 12929 |
. . . 4
⊢ (𝑅 ∈ Ring → · =
(+g‘(mulGrp‘𝑅))) |
19 | 18 | adantr 276 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → · =
(+g‘(mulGrp‘𝑅))) |
20 | 19 | oveqd 5882 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌)) |
21 | | eqidd 2176 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 = 𝑍) |
22 | 19, 20, 21 | oveq123d 5886 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌) · 𝑍) = ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍)) |
23 | | eqidd 2176 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 = 𝑋) |
24 | 19 | oveqd 5882 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 · 𝑍) = (𝑌(+g‘(mulGrp‘𝑅))𝑍)) |
25 | 19, 23, 24 | oveq123d 5886 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · (𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))) |
26 | 16, 22, 25 | 3eqtr4d 2218 |
1
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍))) |