| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > srgidmlem | GIF version | ||
| Description: Lemma for srglidm 13937 and srgridm 13938. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| srgidm.b | ⊢ 𝐵 = (Base‘𝑅) |
| srgidm.t | ⊢ · = (.r‘𝑅) |
| srgidm.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| srgidmlem | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | 1 | srgmgp 13926 | . . 3 ⊢ (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd) |
| 3 | srgidm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 1, 3 | mgpbasg 13884 | . . . . 5 ⊢ (𝑅 ∈ SRing → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 5 | 4 | eleq2d 2299 | . . . 4 ⊢ (𝑅 ∈ SRing → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘(mulGrp‘𝑅)))) |
| 6 | 5 | biimpa 296 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅))) |
| 7 | eqid 2229 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
| 8 | eqid 2229 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
| 9 | eqid 2229 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
| 10 | 7, 8, 9 | mndlrid 13462 | . . 3 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅))) → (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋)) |
| 11 | 2, 6, 10 | syl2an2r 597 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋)) |
| 12 | srgidm.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 13 | 1, 12 | mgpplusgg 13882 | . . . . . 6 ⊢ (𝑅 ∈ SRing → · = (+g‘(mulGrp‘𝑅))) |
| 14 | srgidm.u | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 15 | 1, 14 | ringidvalg 13919 | . . . . . 6 ⊢ (𝑅 ∈ SRing → 1 = (0g‘(mulGrp‘𝑅))) |
| 16 | eqidd 2230 | . . . . . 6 ⊢ (𝑅 ∈ SRing → 𝑋 = 𝑋) | |
| 17 | 13, 15, 16 | oveq123d 6021 | . . . . 5 ⊢ (𝑅 ∈ SRing → ( 1 · 𝑋) = ((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋)) |
| 18 | 17 | eqeq1d 2238 | . . . 4 ⊢ (𝑅 ∈ SRing → (( 1 · 𝑋) = 𝑋 ↔ ((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋)) |
| 19 | 13, 16, 15 | oveq123d 6021 | . . . . 5 ⊢ (𝑅 ∈ SRing → (𝑋 · 1 ) = (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅)))) |
| 20 | 19 | eqeq1d 2238 | . . . 4 ⊢ (𝑅 ∈ SRing → ((𝑋 · 1 ) = 𝑋 ↔ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋)) |
| 21 | 18, 20 | anbi12d 473 | . . 3 ⊢ (𝑅 ∈ SRing → ((( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋) ↔ (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋))) |
| 22 | 21 | adantr 276 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋) ↔ (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋))) |
| 23 | 11, 22 | mpbird 167 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 +gcplusg 13105 .rcmulr 13106 0gc0g 13284 Mndcmnd 13444 mulGrpcmgp 13878 1rcur 13917 SRingcsrg 13921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-plusg 13118 df-mulr 13119 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-mgp 13879 df-ur 13918 df-srg 13922 |
| This theorem is referenced by: srglidm 13937 srgridm 13938 |
| Copyright terms: Public domain | W3C validator |