| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > srgidmlem | GIF version | ||
| Description: Lemma for srglidm 13659 and srgridm 13660. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| srgidm.b | ⊢ 𝐵 = (Base‘𝑅) |
| srgidm.t | ⊢ · = (.r‘𝑅) |
| srgidm.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| srgidmlem | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | 1 | srgmgp 13648 | . . 3 ⊢ (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd) |
| 3 | srgidm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 1, 3 | mgpbasg 13606 | . . . . 5 ⊢ (𝑅 ∈ SRing → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 5 | 4 | eleq2d 2274 | . . . 4 ⊢ (𝑅 ∈ SRing → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘(mulGrp‘𝑅)))) |
| 6 | 5 | biimpa 296 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅))) |
| 7 | eqid 2204 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
| 8 | eqid 2204 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
| 9 | eqid 2204 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
| 10 | 7, 8, 9 | mndlrid 13184 | . . 3 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅))) → (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋)) |
| 11 | 2, 6, 10 | syl2an2r 595 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋)) |
| 12 | srgidm.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 13 | 1, 12 | mgpplusgg 13604 | . . . . . 6 ⊢ (𝑅 ∈ SRing → · = (+g‘(mulGrp‘𝑅))) |
| 14 | srgidm.u | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 15 | 1, 14 | ringidvalg 13641 | . . . . . 6 ⊢ (𝑅 ∈ SRing → 1 = (0g‘(mulGrp‘𝑅))) |
| 16 | eqidd 2205 | . . . . . 6 ⊢ (𝑅 ∈ SRing → 𝑋 = 𝑋) | |
| 17 | 13, 15, 16 | oveq123d 5955 | . . . . 5 ⊢ (𝑅 ∈ SRing → ( 1 · 𝑋) = ((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋)) |
| 18 | 17 | eqeq1d 2213 | . . . 4 ⊢ (𝑅 ∈ SRing → (( 1 · 𝑋) = 𝑋 ↔ ((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋)) |
| 19 | 13, 16, 15 | oveq123d 5955 | . . . . 5 ⊢ (𝑅 ∈ SRing → (𝑋 · 1 ) = (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅)))) |
| 20 | 19 | eqeq1d 2213 | . . . 4 ⊢ (𝑅 ∈ SRing → ((𝑋 · 1 ) = 𝑋 ↔ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋)) |
| 21 | 18, 20 | anbi12d 473 | . . 3 ⊢ (𝑅 ∈ SRing → ((( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋) ↔ (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋))) |
| 22 | 21 | adantr 276 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋) ↔ (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋))) |
| 23 | 11, 22 | mpbird 167 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ‘cfv 5268 (class class class)co 5934 Basecbs 12751 +gcplusg 12828 .rcmulr 12829 0gc0g 13006 Mndcmnd 13166 mulGrpcmgp 13600 1rcur 13639 SRingcsrg 13643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-ltxr 8094 df-inn 9019 df-2 9077 df-3 9078 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-plusg 12841 df-mulr 12842 df-0g 13008 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-mgp 13601 df-ur 13640 df-srg 13644 |
| This theorem is referenced by: srglidm 13659 srgridm 13660 |
| Copyright terms: Public domain | W3C validator |