Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > srgidmlem | GIF version |
Description: Lemma for srglidm 12955 and srgridm 12956. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
srgidm.b | ⊢ 𝐵 = (Base‘𝑅) |
srgidm.t | ⊢ · = (.r‘𝑅) |
srgidm.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
srgidmlem | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2175 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | 1 | srgmgp 12944 | . . 3 ⊢ (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd) |
3 | srgidm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 1, 3 | mgpbasg 12930 | . . . . 5 ⊢ (𝑅 ∈ SRing → 𝐵 = (Base‘(mulGrp‘𝑅))) |
5 | 4 | eleq2d 2245 | . . . 4 ⊢ (𝑅 ∈ SRing → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘(mulGrp‘𝑅)))) |
6 | 5 | biimpa 296 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅))) |
7 | eqid 2175 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
8 | eqid 2175 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
9 | eqid 2175 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
10 | 7, 8, 9 | mndlrid 12700 | . . 3 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅))) → (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋)) |
11 | 2, 6, 10 | syl2an2r 595 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋)) |
12 | srgidm.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
13 | 1, 12 | mgpplusgg 12929 | . . . . . 6 ⊢ (𝑅 ∈ SRing → · = (+g‘(mulGrp‘𝑅))) |
14 | srgidm.u | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
15 | 1, 14 | ringidvalg 12937 | . . . . . 6 ⊢ (𝑅 ∈ SRing → 1 = (0g‘(mulGrp‘𝑅))) |
16 | eqidd 2176 | . . . . . 6 ⊢ (𝑅 ∈ SRing → 𝑋 = 𝑋) | |
17 | 13, 15, 16 | oveq123d 5886 | . . . . 5 ⊢ (𝑅 ∈ SRing → ( 1 · 𝑋) = ((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋)) |
18 | 17 | eqeq1d 2184 | . . . 4 ⊢ (𝑅 ∈ SRing → (( 1 · 𝑋) = 𝑋 ↔ ((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋)) |
19 | 13, 16, 15 | oveq123d 5886 | . . . . 5 ⊢ (𝑅 ∈ SRing → (𝑋 · 1 ) = (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅)))) |
20 | 19 | eqeq1d 2184 | . . . 4 ⊢ (𝑅 ∈ SRing → ((𝑋 · 1 ) = 𝑋 ↔ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋)) |
21 | 18, 20 | anbi12d 473 | . . 3 ⊢ (𝑅 ∈ SRing → ((( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋) ↔ (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋))) |
22 | 21 | adantr 276 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋) ↔ (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋))) |
23 | 11, 22 | mpbird 167 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ‘cfv 5208 (class class class)co 5865 Basecbs 12428 +gcplusg 12492 .rcmulr 12493 0gc0g 12626 Mndcmnd 12682 mulGrpcmgp 12925 1rcur 12935 SRingcsrg 12939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-base 12434 df-sets 12435 df-plusg 12505 df-mulr 12506 df-0g 12628 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-mgp 12926 df-ur 12936 df-srg 12940 |
This theorem is referenced by: srglidm 12955 srgridm 12956 |
Copyright terms: Public domain | W3C validator |