ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitlinv GIF version

Theorem unitlinv 13248
Description: A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitinvcl.1 𝑈 = (Unit‘𝑅)
unitinvcl.2 𝐼 = (invr𝑅)
unitinvcl.3 · = (.r𝑅)
unitinvcl.4 1 = (1r𝑅)
Assertion
Ref Expression
unitlinv ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝐼𝑋) · 𝑋) = 1 )

Proof of Theorem unitlinv
StepHypRef Expression
1 unitinvcl.1 . . . . . . 7 𝑈 = (Unit‘𝑅)
21a1i 9 . . . . . 6 (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅))
3 eqidd 2178 . . . . . 6 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈))
4 ringsrg 13177 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
52, 3, 4unitgrpbasd 13237 . . . . 5 (𝑅 ∈ Ring → 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈)))
65eleq2d 2247 . . . 4 (𝑅 ∈ Ring → (𝑋𝑈𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))))
76pm5.32i 454 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) ↔ (𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))))
8 eqid 2177 . . . . 5 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
91, 8unitgrp 13238 . . . 4 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
10 eqid 2177 . . . . 5 (Base‘((mulGrp‘𝑅) ↾s 𝑈)) = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
11 eqid 2177 . . . . 5 (+g‘((mulGrp‘𝑅) ↾s 𝑈)) = (+g‘((mulGrp‘𝑅) ↾s 𝑈))
12 eqid 2177 . . . . 5 (0g‘((mulGrp‘𝑅) ↾s 𝑈)) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))
13 eqid 2177 . . . . 5 (invg‘((mulGrp‘𝑅) ↾s 𝑈)) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
1410, 11, 12, 13grplinv 12876 . . . 4 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) → (((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))
159, 14sylan 283 . . 3 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) → (((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))
167, 15sylbi 121 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))
17 eqid 2177 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
18 unitinvcl.3 . . . . . 6 · = (.r𝑅)
1917, 18mgpplusgg 13087 . . . . 5 (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅)))
20 basfn 12514 . . . . . . 7 Base Fn V
21 elex 2748 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ V)
22 funfvex 5532 . . . . . . . 8 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
2322funfni 5316 . . . . . . 7 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
2420, 21, 23sylancr 414 . . . . . 6 (𝑅 ∈ Ring → (Base‘𝑅) ∈ V)
25 eqidd 2178 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅))
2625, 2, 4unitssd 13231 . . . . . 6 (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅))
2724, 26ssexd 4143 . . . . 5 (𝑅 ∈ Ring → 𝑈 ∈ V)
2817mgpex 13088 . . . . 5 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ V)
293, 19, 27, 28ressplusgd 12581 . . . 4 (𝑅 ∈ Ring → · = (+g‘((mulGrp‘𝑅) ↾s 𝑈)))
30 unitinvcl.2 . . . . . . 7 𝐼 = (invr𝑅)
3130a1i 9 . . . . . 6 (𝑅 ∈ Ring → 𝐼 = (invr𝑅))
32 id 19 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
332, 3, 31, 32invrfvald 13244 . . . . 5 (𝑅 ∈ Ring → 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈)))
3433fveq1d 5517 . . . 4 (𝑅 ∈ Ring → (𝐼𝑋) = ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋))
35 eqidd 2178 . . . 4 (𝑅 ∈ Ring → 𝑋 = 𝑋)
3629, 34, 35oveq123d 5895 . . 3 (𝑅 ∈ Ring → ((𝐼𝑋) · 𝑋) = (((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑋))
3736adantr 276 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝐼𝑋) · 𝑋) = (((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑋))
38 unitinvcl.4 . . . 4 1 = (1r𝑅)
391, 8, 38unitgrpid 13240 . . 3 (𝑅 ∈ Ring → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))
4039adantr 276 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))
4116, 37, 403eqtr4d 2220 1 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝐼𝑋) · 𝑋) = 1 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  Vcvv 2737   Fn wfn 5211  cfv 5216  (class class class)co 5874  Basecbs 12456  s cress 12457  +gcplusg 12530  .rcmulr 12531  0gc0g 12695  Grpcgrp 12831  invgcminusg 12832  mulGrpcmgp 13083  1rcur 13095  Ringcrg 13132  Unitcui 13209  invrcinvr 13242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-tpos 6245  df-pnf 7992  df-mnf 7993  df-ltxr 7995  df-inn 8918  df-2 8976  df-3 8977  df-ndx 12459  df-slot 12460  df-base 12462  df-sets 12463  df-iress 12464  df-plusg 12543  df-mulr 12544  df-0g 12697  df-mgm 12729  df-sgrp 12762  df-mnd 12772  df-grp 12834  df-minusg 12835  df-cmn 13043  df-abl 13044  df-mgp 13084  df-ur 13096  df-srg 13100  df-ring 13134  df-oppr 13193  df-dvdsr 13211  df-unit 13212  df-invr 13243
This theorem is referenced by:  dvrcan1  13262  subrginv  13318  subrgunit  13320
  Copyright terms: Public domain W3C validator