ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgsub GIF version

Theorem subgsub 13046
Description: The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
subgsubcl.p = (-g𝐺)
subgsub.h 𝐻 = (𝐺s 𝑆)
subgsub.n 𝑁 = (-g𝐻)
Assertion
Ref Expression
subgsub ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 𝑌) = (𝑋𝑁𝑌))

Proof of Theorem subgsub
StepHypRef Expression
1 subgsub.h . . . . . 6 𝐻 = (𝐺s 𝑆)
21a1i 9 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺s 𝑆))
3 eqidd 2178 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐺))
4 id 19 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
5 subgrcl 13039 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
62, 3, 4, 5ressplusgd 12587 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
763ad2ant1 1018 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (+g𝐺) = (+g𝐻))
8 eqidd 2178 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 = 𝑋)
9 eqid 2177 . . . . 5 (invg𝐺) = (invg𝐺)
10 eqid 2177 . . . . 5 (invg𝐻) = (invg𝐻)
111, 9, 10subginv 13041 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑌𝑆) → ((invg𝐺)‘𝑌) = ((invg𝐻)‘𝑌))
12113adant2 1016 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → ((invg𝐺)‘𝑌) = ((invg𝐻)‘𝑌))
137, 8, 12oveq123d 5896 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋(+g𝐺)((invg𝐺)‘𝑌)) = (𝑋(+g𝐻)((invg𝐻)‘𝑌)))
14 eqid 2177 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
1514subgss 13034 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
16153ad2ant1 1018 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑆 ⊆ (Base‘𝐺))
17 simp2 998 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑋𝑆)
1816, 17sseldd 3157 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ∈ (Base‘𝐺))
19 simp3 999 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑌𝑆)
2016, 19sseldd 3157 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ∈ (Base‘𝐺))
21 eqid 2177 . . . 4 (+g𝐺) = (+g𝐺)
22 subgsubcl.p . . . 4 = (-g𝐺)
2314, 21, 9, 22grpsubval 12919 . . 3 ((𝑋 ∈ (Base‘𝐺) ∧ 𝑌 ∈ (Base‘𝐺)) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2418, 20, 23syl2anc 411 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
251subgbas 13038 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
26253ad2ant1 1018 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑆 = (Base‘𝐻))
2717, 26eleqtrd 2256 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ∈ (Base‘𝐻))
2819, 26eleqtrd 2256 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ∈ (Base‘𝐻))
29 eqid 2177 . . . 4 (Base‘𝐻) = (Base‘𝐻)
30 eqid 2177 . . . 4 (+g𝐻) = (+g𝐻)
31 subgsub.n . . . 4 𝑁 = (-g𝐻)
3229, 30, 10, 31grpsubval 12919 . . 3 ((𝑋 ∈ (Base‘𝐻) ∧ 𝑌 ∈ (Base‘𝐻)) → (𝑋𝑁𝑌) = (𝑋(+g𝐻)((invg𝐻)‘𝑌)))
3327, 28, 32syl2anc 411 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋𝑁𝑌) = (𝑋(+g𝐻)((invg𝐻)‘𝑌)))
3413, 24, 333eqtr4d 2220 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 𝑌) = (𝑋𝑁𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978   = wceq 1353  wcel 2148  wss 3130  cfv 5217  (class class class)co 5875  Basecbs 12462  s cress 12463  +gcplusg 12536  Grpcgrp 12877  invgcminusg 12878  -gcsg 12879  SubGrpcsubg 13027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-pnf 7994  df-mnf 7995  df-ltxr 7997  df-inn 8920  df-2 8978  df-ndx 12465  df-slot 12466  df-base 12468  df-sets 12469  df-iress 12470  df-plusg 12549  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-minusg 12881  df-sbg 12882  df-subg 13030
This theorem is referenced by:  zringsubgval  13498
  Copyright terms: Public domain W3C validator