ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgsub GIF version

Theorem subgsub 13078
Description: The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
subgsubcl.p = (-g𝐺)
subgsub.h 𝐻 = (𝐺s 𝑆)
subgsub.n 𝑁 = (-g𝐻)
Assertion
Ref Expression
subgsub ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 𝑌) = (𝑋𝑁𝑌))

Proof of Theorem subgsub
StepHypRef Expression
1 subgsub.h . . . . . 6 𝐻 = (𝐺s 𝑆)
21a1i 9 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺s 𝑆))
3 eqidd 2188 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐺))
4 id 19 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
5 subgrcl 13071 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
62, 3, 4, 5ressplusgd 12602 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
763ad2ant1 1019 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (+g𝐺) = (+g𝐻))
8 eqidd 2188 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 = 𝑋)
9 eqid 2187 . . . . 5 (invg𝐺) = (invg𝐺)
10 eqid 2187 . . . . 5 (invg𝐻) = (invg𝐻)
111, 9, 10subginv 13073 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑌𝑆) → ((invg𝐺)‘𝑌) = ((invg𝐻)‘𝑌))
12113adant2 1017 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → ((invg𝐺)‘𝑌) = ((invg𝐻)‘𝑌))
137, 8, 12oveq123d 5909 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋(+g𝐺)((invg𝐺)‘𝑌)) = (𝑋(+g𝐻)((invg𝐻)‘𝑌)))
14 eqid 2187 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
1514subgss 13066 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
16153ad2ant1 1019 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑆 ⊆ (Base‘𝐺))
17 simp2 999 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑋𝑆)
1816, 17sseldd 3168 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ∈ (Base‘𝐺))
19 simp3 1000 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑌𝑆)
2016, 19sseldd 3168 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ∈ (Base‘𝐺))
21 eqid 2187 . . . 4 (+g𝐺) = (+g𝐺)
22 subgsubcl.p . . . 4 = (-g𝐺)
2314, 21, 9, 22grpsubval 12943 . . 3 ((𝑋 ∈ (Base‘𝐺) ∧ 𝑌 ∈ (Base‘𝐺)) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2418, 20, 23syl2anc 411 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
251subgbas 13070 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
26253ad2ant1 1019 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑆 = (Base‘𝐻))
2717, 26eleqtrd 2266 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ∈ (Base‘𝐻))
2819, 26eleqtrd 2266 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ∈ (Base‘𝐻))
29 eqid 2187 . . . 4 (Base‘𝐻) = (Base‘𝐻)
30 eqid 2187 . . . 4 (+g𝐻) = (+g𝐻)
31 subgsub.n . . . 4 𝑁 = (-g𝐻)
3229, 30, 10, 31grpsubval 12943 . . 3 ((𝑋 ∈ (Base‘𝐻) ∧ 𝑌 ∈ (Base‘𝐻)) → (𝑋𝑁𝑌) = (𝑋(+g𝐻)((invg𝐻)‘𝑌)))
3327, 28, 32syl2anc 411 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋𝑁𝑌) = (𝑋(+g𝐻)((invg𝐻)‘𝑌)))
3413, 24, 333eqtr4d 2230 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 𝑌) = (𝑋𝑁𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 979   = wceq 1363  wcel 2158  wss 3141  cfv 5228  (class class class)co 5888  Basecbs 12476  s cress 12477  +gcplusg 12551  Grpcgrp 12899  invgcminusg 12900  -gcsg 12901  SubGrpcsubg 13059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-pre-ltirr 7937  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-inn 8934  df-2 8992  df-ndx 12479  df-slot 12480  df-base 12482  df-sets 12483  df-iress 12484  df-plusg 12564  df-0g 12725  df-mgm 12794  df-sgrp 12827  df-mnd 12840  df-grp 12902  df-minusg 12903  df-sbg 12904  df-subg 13062
This theorem is referenced by:  zringsubgval  13777
  Copyright terms: Public domain W3C validator