| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringidmlem | GIF version | ||
| Description: Lemma for ringlidm 13855 and ringridm 13856. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| rngidm.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngidm.t | ⊢ · = (.r‘𝑅) |
| rngidm.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringidmlem | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | 1 | ringmgp 13834 | . . 3 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 3 | simpr 110 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 4 | rngidm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | 1, 4 | mgpbasg 13758 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 7 | 3, 6 | eleqtrd 2285 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅))) |
| 8 | eqid 2206 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
| 9 | eqid 2206 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
| 10 | eqid 2206 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
| 11 | 8, 9, 10 | mndlrid 13336 | . . 3 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅))) → (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋)) |
| 12 | 2, 7, 11 | syl2an2r 595 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋)) |
| 13 | rngidm.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 14 | 1, 13 | mgpplusgg 13756 | . . . . . 6 ⊢ (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅))) |
| 15 | 14 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → · = (+g‘(mulGrp‘𝑅))) |
| 16 | rngidm.u | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 17 | 1, 16 | ringidvalg 13793 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 1 = (0g‘(mulGrp‘𝑅))) |
| 18 | 17 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 1 = (0g‘(mulGrp‘𝑅))) |
| 19 | eqidd 2207 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 = 𝑋) | |
| 20 | 15, 18, 19 | oveq123d 5977 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = ((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋)) |
| 21 | 20 | eqeq1d 2215 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ↔ ((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋)) |
| 22 | 15, 19, 18 | oveq123d 5977 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 1 ) = (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅)))) |
| 23 | 22 | eqeq1d 2215 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((𝑋 · 1 ) = 𝑋 ↔ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋)) |
| 24 | 21, 23 | anbi12d 473 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋) ↔ (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋))) |
| 25 | 12, 24 | mpbird 167 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ‘cfv 5279 (class class class)co 5956 Basecbs 12902 +gcplusg 12979 .rcmulr 12980 0gc0g 13158 Mndcmnd 13318 mulGrpcmgp 13752 1rcur 13791 Ringcrg 13828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-pre-ltirr 8052 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-ltxr 8127 df-inn 9052 df-2 9110 df-3 9111 df-ndx 12905 df-slot 12906 df-base 12908 df-sets 12909 df-plusg 12992 df-mulr 12993 df-0g 13160 df-mgm 13258 df-sgrp 13304 df-mnd 13319 df-mgp 13753 df-ur 13792 df-ring 13830 |
| This theorem is referenced by: ringlidm 13855 ringridm 13856 ringid 13858 subrg1 14063 |
| Copyright terms: Public domain | W3C validator |