| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringidmlem | GIF version | ||
| Description: Lemma for ringlidm 13579 and ringridm 13580. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| rngidm.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngidm.t | ⊢ · = (.r‘𝑅) |
| rngidm.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringidmlem | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | 1 | ringmgp 13558 | . . 3 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 3 | simpr 110 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 4 | rngidm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | 1, 4 | mgpbasg 13482 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 7 | 3, 6 | eleqtrd 2275 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅))) |
| 8 | eqid 2196 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
| 9 | eqid 2196 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
| 10 | eqid 2196 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
| 11 | 8, 9, 10 | mndlrid 13075 | . . 3 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅))) → (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋)) |
| 12 | 2, 7, 11 | syl2an2r 595 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋)) |
| 13 | rngidm.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 14 | 1, 13 | mgpplusgg 13480 | . . . . . 6 ⊢ (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅))) |
| 15 | 14 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → · = (+g‘(mulGrp‘𝑅))) |
| 16 | rngidm.u | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 17 | 1, 16 | ringidvalg 13517 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 1 = (0g‘(mulGrp‘𝑅))) |
| 18 | 17 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 1 = (0g‘(mulGrp‘𝑅))) |
| 19 | eqidd 2197 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 = 𝑋) | |
| 20 | 15, 18, 19 | oveq123d 5943 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = ((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋)) |
| 21 | 20 | eqeq1d 2205 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ↔ ((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋)) |
| 22 | 15, 19, 18 | oveq123d 5943 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 1 ) = (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅)))) |
| 23 | 22 | eqeq1d 2205 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((𝑋 · 1 ) = 𝑋 ↔ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋)) |
| 24 | 21, 23 | anbi12d 473 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋) ↔ (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋))) |
| 25 | 12, 24 | mpbird 167 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 .rcmulr 12756 0gc0g 12927 Mndcmnd 13057 mulGrpcmgp 13476 1rcur 13515 Ringcrg 13552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-mgp 13477 df-ur 13516 df-ring 13554 |
| This theorem is referenced by: ringlidm 13579 ringridm 13580 ringid 13582 subrg1 13787 |
| Copyright terms: Public domain | W3C validator |