ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringidmlem GIF version

Theorem ringidmlem 13521
Description: Lemma for ringlidm 13522 and ringridm 13523. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
rngidm.b 𝐵 = (Base‘𝑅)
rngidm.t · = (.r𝑅)
rngidm.u 1 = (1r𝑅)
Assertion
Ref Expression
ringidmlem ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋))

Proof of Theorem ringidmlem
StepHypRef Expression
1 eqid 2193 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21ringmgp 13501 . . 3 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
3 simpr 110 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋𝐵)
4 rngidm.b . . . . . 6 𝐵 = (Base‘𝑅)
51, 4mgpbasg 13425 . . . . 5 (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅)))
65adantr 276 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝐵 = (Base‘(mulGrp‘𝑅)))
73, 6eleqtrd 2272 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅)))
8 eqid 2193 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
9 eqid 2193 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
10 eqid 2193 . . . 4 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
118, 9, 10mndlrid 13018 . . 3 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅))) → (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋))
122, 7, 11syl2an2r 595 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋))
13 rngidm.t . . . . . . 7 · = (.r𝑅)
141, 13mgpplusgg 13423 . . . . . 6 (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅)))
1514adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → · = (+g‘(mulGrp‘𝑅)))
16 rngidm.u . . . . . . 7 1 = (1r𝑅)
171, 16ringidvalg 13460 . . . . . 6 (𝑅 ∈ Ring → 1 = (0g‘(mulGrp‘𝑅)))
1817adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 1 = (0g‘(mulGrp‘𝑅)))
19 eqidd 2194 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 = 𝑋)
2015, 18, 19oveq123d 5940 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 · 𝑋) = ((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋))
2120eqeq1d 2202 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 1 · 𝑋) = 𝑋 ↔ ((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋))
2215, 19, 18oveq123d 5940 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))))
2322eqeq1d 2202 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((𝑋 · 1 ) = 𝑋 ↔ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋))
2421, 23anbi12d 473 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋) ↔ (((0g‘(mulGrp‘𝑅))(+g‘(mulGrp‘𝑅))𝑋) = 𝑋 ∧ (𝑋(+g‘(mulGrp‘𝑅))(0g‘(mulGrp‘𝑅))) = 𝑋)))
2512, 24mpbird 167 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  .rcmulr 12699  0gc0g 12870  Mndcmnd 13000  mulGrpcmgp 13419  1rcur 13458  Ringcrg 13495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mgp 13420  df-ur 13459  df-ring 13497
This theorem is referenced by:  ringlidm  13522  ringridm  13523  ringid  13525  subrg1  13730
  Copyright terms: Public domain W3C validator