Theorem List for Intuitionistic Logic Explorer - 6801-6900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | mapsspw 6801 |
Set exponentiation is a subset of the power set of the Cartesian product
of its arguments. (Contributed by NM, 8-Dec-2006.) (Revised by Mario
Carneiro, 26-Apr-2015.)
|
| ⊢ (𝐴 ↑𝑚 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
| |
| Theorem | fvmptmap 6802* |
Special case of fvmpt 5684 for operator theorems. (Contributed by NM,
27-Nov-2007.)
|
| ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝑅 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶)
& ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑𝑚 𝐷) ↦ 𝐵) ⇒ ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) |
| |
| Theorem | map0e 6803 |
Set exponentiation with an empty exponent (ordinal number 0) is ordinal
number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM,
10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) =
1o) |
| |
| Theorem | map0b 6804 |
Set exponentiation with an empty base is the empty set, provided the
exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by
NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
|
| ⊢ (𝐴 ≠ ∅ → (∅
↑𝑚 𝐴) = ∅) |
| |
| Theorem | map0g 6805 |
Set exponentiation is empty iff the base is empty and the exponent is
not empty. Theorem 97 of [Suppes] p. 89.
(Contributed by Mario
Carneiro, 30-Apr-2015.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠
∅))) |
| |
| Theorem | map0 6806 |
Set exponentiation is empty iff the base is empty and the exponent is
not empty. Theorem 97 of [Suppes] p. 89.
(Contributed by NM,
10-Dec-2003.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠
∅)) |
| |
| Theorem | mapsn 6807* |
The value of set exponentiation with a singleton exponent. Theorem 98
of [Suppes] p. 89. (Contributed by NM,
10-Dec-2003.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴 ↑𝑚 {𝐵}) = {𝑓 ∣ ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉}} |
| |
| Theorem | mapss 6808 |
Subset inheritance for set exponentiation. Theorem 99 of [Suppes]
p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑𝑚 𝐶) ⊆ (𝐵 ↑𝑚 𝐶)) |
| |
| Theorem | fdiagfn 6809* |
Functionality of the diagonal map. (Contributed by Stefan O'Rear,
24-Jan-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵⟶(𝐵 ↑𝑚 𝐼)) |
| |
| Theorem | fvdiagfn 6810* |
Functionality of the diagonal map. (Contributed by Stefan O'Rear,
24-Jan-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (𝐼 × {𝑋})) |
| |
| Theorem | mapsnconst 6811 |
Every singleton map is a constant function. (Contributed by Stefan
O'Rear, 25-Mar-2015.)
|
| ⊢ 𝑆 = {𝑋}
& ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈
V ⇒ ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
| |
| Theorem | mapsncnv 6812* |
Expression for the inverse of the canonical map between a set and its
set of singleton functions. (Contributed by Stefan O'Rear,
21-Mar-2015.)
|
| ⊢ 𝑆 = {𝑋}
& ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) ⇒ ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
| |
| Theorem | mapsnf1o2 6813* |
Explicit bijection between a set and its singleton functions.
(Contributed by Stefan O'Rear, 21-Mar-2015.)
|
| ⊢ 𝑆 = {𝑋}
& ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) ⇒ ⊢ 𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
| |
| Theorem | mapsnf1o3 6814* |
Explicit bijection in the reverse of mapsnf1o2 6813. (Contributed by
Stefan O'Rear, 24-Mar-2015.)
|
| ⊢ 𝑆 = {𝑋}
& ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) ⇒ ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) |
| |
| 2.6.27 Infinite Cartesian products
|
| |
| Syntax | cixp 6815 |
Extend class notation to include infinite Cartesian products.
|
| class X𝑥 ∈ 𝐴 𝐵 |
| |
| Definition | df-ixp 6816* |
Definition of infinite Cartesian product of [Enderton] p. 54. Enderton
uses a bold "X" with 𝑥 ∈ 𝐴 written underneath or as a
subscript, as
does Stoll p. 47. Some books use a capital pi, but we will reserve that
notation for products of numbers. Usually 𝐵 represents a class
expression containing 𝑥 free and thus can be thought of as
𝐵(𝑥). Normally, 𝑥 is not free in 𝐴,
although this is
not a requirement of the definition. (Contributed by NM,
28-Sep-2006.)
|
| ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
| |
| Theorem | dfixp 6817* |
Eliminate the expression {𝑥 ∣ 𝑥 ∈ 𝐴} in df-ixp 6816, under the
assumption that 𝐴 and 𝑥 are disjoint. This way,
we can say that
𝑥 is bound in X𝑥 ∈
𝐴𝐵 even if it appears free in 𝐴.
(Contributed by Mario Carneiro, 12-Aug-2016.)
|
| ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
| |
| Theorem | ixpsnval 6818* |
The value of an infinite Cartesian product with a singleton.
(Contributed by AV, 3-Dec-2018.)
|
| ⊢ (𝑋 ∈ 𝑉 → X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) |
| |
| Theorem | elixp2 6819* |
Membership in an infinite Cartesian product. See df-ixp 6816 for
discussion of the notation. (Contributed by NM, 28-Sep-2006.)
|
| ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| |
| Theorem | fvixp 6820* |
Projection of a factor of an indexed Cartesian product. (Contributed by
Mario Carneiro, 11-Jun-2016.)
|
| ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) ⇒ ⊢ ((𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐷) |
| |
| Theorem | ixpfn 6821* |
A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by
Mario Carneiro, 31-May-2014.)
|
| ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴) |
| |
| Theorem | elixp 6822* |
Membership in an infinite Cartesian product. (Contributed by NM,
28-Sep-2006.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| |
| Theorem | elixpconst 6823* |
Membership in an infinite Cartesian product of a constant 𝐵.
(Contributed by NM, 12-Apr-2008.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
| |
| Theorem | ixpconstg 6824* |
Infinite Cartesian product of a constant 𝐵. (Contributed by Mario
Carneiro, 11-Jan-2015.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑𝑚 𝐴)) |
| |
| Theorem | ixpconst 6825* |
Infinite Cartesian product of a constant 𝐵. (Contributed by NM,
28-Sep-2006.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑𝑚 𝐴) |
| |
| Theorem | ixpeq1 6826* |
Equality theorem for infinite Cartesian product. (Contributed by NM,
29-Sep-2006.)
|
| ⊢ (𝐴 = 𝐵 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
| |
| Theorem | ixpeq1d 6827* |
Equality theorem for infinite Cartesian product. (Contributed by Mario
Carneiro, 11-Jun-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
| |
| Theorem | ss2ixp 6828 |
Subclass theorem for infinite Cartesian product. (Contributed by NM,
29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.)
|
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | ixpeq2 6829 |
Equality theorem for infinite Cartesian product. (Contributed by NM,
29-Sep-2006.)
|
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | ixpeq2dva 6830* |
Equality theorem for infinite Cartesian product. (Contributed by Mario
Carneiro, 11-Jun-2016.)
|
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | ixpeq2dv 6831* |
Equality theorem for infinite Cartesian product. (Contributed by Mario
Carneiro, 11-Jun-2016.)
|
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | cbvixp 6832* |
Change bound variable in an indexed Cartesian product. (Contributed by
Jeff Madsen, 20-Jun-2011.)
|
| ⊢ Ⅎ𝑦𝐵
& ⊢ Ⅎ𝑥𝐶
& ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| |
| Theorem | cbvixpv 6833* |
Change bound variable in an indexed Cartesian product. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| |
| Theorem | nfixpxy 6834* |
Bound-variable hypothesis builder for indexed Cartesian product.
(Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon,
15-Feb-2023.)
|
| ⊢ Ⅎ𝑦𝐴
& ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
| |
| Theorem | nfixp1 6835 |
The index variable in an indexed Cartesian product is not free.
(Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro,
15-Oct-2016.)
|
| ⊢ Ⅎ𝑥X𝑥 ∈ 𝐴 𝐵 |
| |
| Theorem | ixpprc 6836* |
A cartesian product of proper-class many sets is empty, because any
function in the cartesian product has to be a set with domain 𝐴,
which is not possible for a proper class domain. (Contributed by Mario
Carneiro, 25-Jan-2015.)
|
| ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈
𝐴 𝐵 = ∅) |
| |
| Theorem | ixpf 6837* |
A member of an infinite Cartesian product maps to the indexed union of
the product argument. Remark in [Enderton] p. 54. (Contributed by NM,
28-Sep-2006.)
|
| ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹:𝐴⟶∪
𝑥 ∈ 𝐴 𝐵) |
| |
| Theorem | uniixp 6838* |
The union of an infinite Cartesian product is included in a Cartesian
product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro,
24-Jun-2015.)
|
| ⊢ ∪ X𝑥 ∈
𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) |
| |
| Theorem | ixpexgg 6839* |
The existence of an infinite Cartesian product. 𝑥 is normally a
free-variable parameter in 𝐵. Remark in Enderton p. 54.
(Contributed by NM, 28-Sep-2006.) (Revised by Jim Kingdon,
15-Feb-2023.)
|
| ⊢ ((𝐴 ∈ 𝑊 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
| |
| Theorem | ixpin 6840* |
The intersection of two infinite Cartesian products. (Contributed by
Mario Carneiro, 3-Feb-2015.)
|
| ⊢ X𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (X𝑥 ∈ 𝐴 𝐵 ∩ X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | ixpiinm 6841* |
The indexed intersection of a collection of infinite Cartesian products.
(Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon,
15-Feb-2023.)
|
| ⊢ (∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 = ∩
𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | ixpintm 6842* |
The intersection of a collection of infinite Cartesian products.
(Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon,
15-Feb-2023.)
|
| ⊢ (∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝑦) |
| |
| Theorem | ixp0x 6843 |
An infinite Cartesian product with an empty index set. (Contributed by
NM, 21-Sep-2007.)
|
| ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
| |
| Theorem | ixpssmap2g 6844* |
An infinite Cartesian product is a subset of set exponentiation. This
version of ixpssmapg 6845 avoids ax-coll 4178. (Contributed by Mario
Carneiro, 16-Nov-2014.)
|
| ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴)) |
| |
| Theorem | ixpssmapg 6845* |
An infinite Cartesian product is a subset of set exponentiation.
(Contributed by Jeff Madsen, 19-Jun-2011.)
|
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴)) |
| |
| Theorem | 0elixp 6846 |
Membership of the empty set in an infinite Cartesian product.
(Contributed by Steve Rodriguez, 29-Sep-2006.)
|
| ⊢ ∅ ∈ X𝑥 ∈ ∅ 𝐴 |
| |
| Theorem | ixpm 6847* |
If an infinite Cartesian product of a family 𝐵(𝑥) is inhabited,
every 𝐵(𝑥) is inhabited. (Contributed by Mario
Carneiro,
22-Jun-2016.) (Revised by Jim Kingdon, 16-Feb-2023.)
|
| ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
| |
| Theorem | ixp0 6848 |
The infinite Cartesian product of a family 𝐵(𝑥) with an empty
member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim
Kingdon, 16-Feb-2023.)
|
| ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈
𝐴 𝐵 = ∅) |
| |
| Theorem | ixpssmap 6849* |
An infinite Cartesian product is a subset of set exponentiation. Remark
in [Enderton] p. 54. (Contributed by
NM, 28-Sep-2006.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴) |
| |
| Theorem | resixp 6850* |
Restriction of an element of an infinite Cartesian product.
(Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro,
31-May-2014.)
|
| ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) |
| |
| Theorem | mptelixpg 6851* |
Condition for an explicit member of an indexed product. (Contributed by
Stefan O'Rear, 4-Jan-2015.)
|
| ⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑥 ∈ 𝐼 𝐾 ↔ ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) |
| |
| Theorem | elixpsn 6852* |
Membership in a class of singleton functions. (Contributed by Stefan
O'Rear, 24-Jan-2015.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐹 = {〈𝐴, 𝑦〉})) |
| |
| Theorem | ixpsnf1o 6853* |
A bijection between a class and single-point functions to it.
(Contributed by Stefan O'Rear, 24-Jan-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴) |
| |
| Theorem | mapsnf1o 6854* |
A bijection between a set and single-point functions to it.
(Contributed by Stefan O'Rear, 24-Jan-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼})) |
| |
| 2.6.28 Equinumerosity
|
| |
| Syntax | cen 6855 |
Extend class definition to include the equinumerosity relation
("approximately equals" symbol)
|
| class ≈ |
| |
| Syntax | cdom 6856 |
Extend class definition to include the dominance relation (curly
less-than-or-equal)
|
| class ≼ |
| |
| Syntax | cfn 6857 |
Extend class definition to include the class of all finite sets.
|
| class Fin |
| |
| Definition | df-en 6858* |
Define the equinumerosity relation. Definition of [Enderton] p. 129.
We define ≈ to be a binary relation rather
than a connective, so
its arguments must be sets to be meaningful. This is acceptable because
we do not consider equinumerosity for proper classes. We derive the
usual definition as bren 6865. (Contributed by NM, 28-Mar-1998.)
|
| ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| |
| Definition | df-dom 6859* |
Define the dominance relation. Compare Definition of [Enderton] p. 145.
Typical textbook definitions are derived as brdom 6869 and domen 6870.
(Contributed by NM, 28-Mar-1998.)
|
| ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} |
| |
| Definition | df-fin 6860* |
Define the (proper) class of all finite sets. Similar to Definition
10.29 of [TakeutiZaring] p. 91,
whose "Fin(a)" corresponds to
our "𝑎 ∈ Fin". This definition is
meaningful whether or not we
accept the Axiom of Infinity ax-inf2 16249. (Contributed by NM,
22-Aug-2008.)
|
| ⊢ Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} |
| |
| Theorem | relen 6861 |
Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.)
|
| ⊢ Rel ≈ |
| |
| Theorem | reldom 6862 |
Dominance is a relation. (Contributed by NM, 28-Mar-1998.)
|
| ⊢ Rel ≼ |
| |
| Theorem | encv 6863 |
If two classes are equinumerous, both classes are sets. (Contributed by
AV, 21-Mar-2019.)
|
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| |
| Theorem | breng 6864* |
Equinumerosity relation. This variation of bren 6865
does not require the
Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a
subproof of bren 6865. (Revised by BTernaryTau, 23-Sep-2024.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
| |
| Theorem | bren 6865* |
Equinumerosity relation. (Contributed by NM, 15-Jun-1998.)
|
| ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| |
| Theorem | brdom2g 6866* |
Dominance relation. This variation of brdomg 6867 does not require the
Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a
subproof of brdomg 6867. (Revised by BTernaryTau, 29-Nov-2024.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| |
| Theorem | brdomg 6867* |
Dominance relation. (Contributed by NM, 15-Jun-1998.)
|
| ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| |
| Theorem | brdomi 6868* |
Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.)
|
| ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| |
| Theorem | brdom 6869* |
Dominance relation. (Contributed by NM, 15-Jun-1998.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| |
| Theorem | domen 6870* |
Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146.
(Contributed by NM, 15-Jun-1998.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| |
| Theorem | domeng 6871* |
Dominance in terms of equinumerosity, with the sethood requirement
expressed as an antecedent. Example 1 of [Enderton] p. 146.
(Contributed by NM, 24-Apr-2004.)
|
| ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
| |
| Theorem | ctex 6872 |
A class dominated by ω is a set. See also ctfoex 7253 which says that
a countable class is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.)
(Proof shortened by Jim Kingdon, 13-Mar-2023.)
|
| ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| |
| Theorem | f1oen4g 6873 |
The domain and range of a one-to-one, onto set function are
equinumerous. This variation of f1oeng 6878 does not require the Axiom of
Collection nor the Axiom of Union. (Contributed by BTernaryTau,
7-Dec-2024.)
|
| ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| |
| Theorem | f1dom4g 6874 |
The domain of a one-to-one set function is dominated by its codomain
when the latter is a set. This variation of f1domg 6879 does not require
the Axiom of Collection nor the Axiom of Union. (Contributed by
BTernaryTau, 7-Dec-2024.)
|
| ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) |
| |
| Theorem | f1oen3g 6875 |
The domain and range of a one-to-one, onto function are equinumerous.
This variation of f1oeng 6878 does not require the Axiom of Replacement.
(Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro,
10-Sep-2015.)
|
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| |
| Theorem | f1oen2g 6876 |
The domain and range of a one-to-one, onto function are equinumerous.
This variation of f1oeng 6878 does not require the Axiom of Replacement.
(Contributed by Mario Carneiro, 10-Sep-2015.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| |
| Theorem | f1dom2g 6877 |
The domain of a one-to-one function is dominated by its codomain. This
variation of f1domg 6879 does not require the Axiom of Replacement.
(Contributed by Mario Carneiro, 24-Jun-2015.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) |
| |
| Theorem | f1oeng 6878 |
The domain and range of a one-to-one, onto function are equinumerous.
(Contributed by NM, 19-Jun-1998.)
|
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| |
| Theorem | f1domg 6879 |
The domain of a one-to-one function is dominated by its codomain.
(Contributed by NM, 4-Sep-2004.)
|
| ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) |
| |
| Theorem | f1oen 6880 |
The domain and range of a one-to-one, onto function are equinumerous.
(Contributed by NM, 19-Jun-1998.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
| |
| Theorem | f1dom 6881 |
The domain of a one-to-one function is dominated by its codomain.
(Contributed by NM, 19-Jun-1998.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵) |
| |
| Theorem | isfi 6882* |
Express "𝐴 is finite". Definition 10.29
of [TakeutiZaring] p. 91
(whose "Fin " is a predicate instead
of a class). (Contributed by
NM, 22-Aug-2008.)
|
| ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| |
| Theorem | enssdom 6883 |
Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.)
|
| ⊢ ≈ ⊆ ≼ |
| |
| Theorem | endom 6884 |
Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94.
(Contributed by NM, 28-May-1998.)
|
| ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| |
| Theorem | enrefg 6885 |
Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed
by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
|
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) |
| |
| Theorem | enref 6886 |
Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed
by NM, 25-Sep-2004.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ≈ 𝐴 |
| |
| Theorem | eqeng 6887 |
Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) |
| |
| Theorem | domrefg 6888 |
Dominance is reflexive. (Contributed by NM, 18-Jun-1998.)
|
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ 𝐴) |
| |
| Theorem | en2d 6889* |
Equinumerosity inference from an implicit one-to-one onto function.
(Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro,
12-May-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ V)) & ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ V)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| |
| Theorem | en3d 6890* |
Equinumerosity inference from an implicit one-to-one onto function.
(Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro,
12-May-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶))) ⇒ ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| |
| Theorem | en2i 6891* |
Equinumerosity inference from an implicit one-to-one onto function.
(Contributed by NM, 4-Jan-2004.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) & ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) ⇒ ⊢ 𝐴 ≈ 𝐵 |
| |
| Theorem | en3i 6892* |
Equinumerosity inference from an implicit one-to-one onto function.
(Contributed by NM, 19-Jul-2004.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)
& ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴)
& ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) ⇒ ⊢ 𝐴 ≈ 𝐵 |
| |
| Theorem | dom2lem 6893* |
A mapping (first hypothesis) that is one-to-one (second hypothesis)
implies its domain is dominated by its codomain. (Contributed by NM,
24-Jul-2004.)
|
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵) |
| |
| Theorem | dom2d 6894* |
A mapping (first hypothesis) that is one-to-one (second hypothesis)
implies its domain is dominated by its codomain. (Contributed by NM,
24-Jul-2004.) (Revised by Mario Carneiro, 20-May-2013.)
|
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) ⇒ ⊢ (𝜑 → (𝐵 ∈ 𝑅 → 𝐴 ≼ 𝐵)) |
| |
| Theorem | dom3d 6895* |
A mapping (first hypothesis) that is one-to-one (second hypothesis)
implies its domain is dominated by its codomain. (Contributed by Mario
Carneiro, 20-May-2013.)
|
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐴 ≼ 𝐵) |
| |
| Theorem | dom2 6896* |
A mapping (first hypothesis) that is one-to-one (second hypothesis)
implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be
read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their
distinct variable conditions. (Contributed by NM, 26-Oct-2003.)
|
| ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)
& ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐴 ≼ 𝐵) |
| |
| Theorem | dom3 6897* |
A mapping (first hypothesis) that is one-to-one (second hypothesis)
implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be
read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their
distinct variable conditions. (Contributed by Mario Carneiro,
20-May-2013.)
|
| ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)
& ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ 𝐵) |
| |
| Theorem | idssen 6898 |
Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ I ⊆ ≈ |
| |
| Theorem | domssr 6899 |
If 𝐶 is a superset of 𝐵 and
𝐵
dominates 𝐴, then 𝐶
also dominates 𝐴. (Contributed by BTernaryTau,
7-Dec-2024.)
|
| ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐶) |
| |
| Theorem | ssdomg 6900 |
A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed
by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
|
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |