Theorem List for Intuitionistic Logic Explorer - 6801-6900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | ixpconstg 6801* |
Infinite Cartesian product of a constant 𝐵. (Contributed by Mario
Carneiro, 11-Jan-2015.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑𝑚 𝐴)) |
| |
| Theorem | ixpconst 6802* |
Infinite Cartesian product of a constant 𝐵. (Contributed by NM,
28-Sep-2006.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑𝑚 𝐴) |
| |
| Theorem | ixpeq1 6803* |
Equality theorem for infinite Cartesian product. (Contributed by NM,
29-Sep-2006.)
|
| ⊢ (𝐴 = 𝐵 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
| |
| Theorem | ixpeq1d 6804* |
Equality theorem for infinite Cartesian product. (Contributed by Mario
Carneiro, 11-Jun-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
| |
| Theorem | ss2ixp 6805 |
Subclass theorem for infinite Cartesian product. (Contributed by NM,
29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.)
|
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | ixpeq2 6806 |
Equality theorem for infinite Cartesian product. (Contributed by NM,
29-Sep-2006.)
|
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | ixpeq2dva 6807* |
Equality theorem for infinite Cartesian product. (Contributed by Mario
Carneiro, 11-Jun-2016.)
|
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | ixpeq2dv 6808* |
Equality theorem for infinite Cartesian product. (Contributed by Mario
Carneiro, 11-Jun-2016.)
|
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | cbvixp 6809* |
Change bound variable in an indexed Cartesian product. (Contributed by
Jeff Madsen, 20-Jun-2011.)
|
| ⊢ Ⅎ𝑦𝐵
& ⊢ Ⅎ𝑥𝐶
& ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| |
| Theorem | cbvixpv 6810* |
Change bound variable in an indexed Cartesian product. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| |
| Theorem | nfixpxy 6811* |
Bound-variable hypothesis builder for indexed Cartesian product.
(Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon,
15-Feb-2023.)
|
| ⊢ Ⅎ𝑦𝐴
& ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
| |
| Theorem | nfixp1 6812 |
The index variable in an indexed Cartesian product is not free.
(Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro,
15-Oct-2016.)
|
| ⊢ Ⅎ𝑥X𝑥 ∈ 𝐴 𝐵 |
| |
| Theorem | ixpprc 6813* |
A cartesian product of proper-class many sets is empty, because any
function in the cartesian product has to be a set with domain 𝐴,
which is not possible for a proper class domain. (Contributed by Mario
Carneiro, 25-Jan-2015.)
|
| ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈
𝐴 𝐵 = ∅) |
| |
| Theorem | ixpf 6814* |
A member of an infinite Cartesian product maps to the indexed union of
the product argument. Remark in [Enderton] p. 54. (Contributed by NM,
28-Sep-2006.)
|
| ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹:𝐴⟶∪
𝑥 ∈ 𝐴 𝐵) |
| |
| Theorem | uniixp 6815* |
The union of an infinite Cartesian product is included in a Cartesian
product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro,
24-Jun-2015.)
|
| ⊢ ∪ X𝑥 ∈
𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) |
| |
| Theorem | ixpexgg 6816* |
The existence of an infinite Cartesian product. 𝑥 is normally a
free-variable parameter in 𝐵. Remark in Enderton p. 54.
(Contributed by NM, 28-Sep-2006.) (Revised by Jim Kingdon,
15-Feb-2023.)
|
| ⊢ ((𝐴 ∈ 𝑊 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
| |
| Theorem | ixpin 6817* |
The intersection of two infinite Cartesian products. (Contributed by
Mario Carneiro, 3-Feb-2015.)
|
| ⊢ X𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (X𝑥 ∈ 𝐴 𝐵 ∩ X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | ixpiinm 6818* |
The indexed intersection of a collection of infinite Cartesian products.
(Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon,
15-Feb-2023.)
|
| ⊢ (∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 = ∩
𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | ixpintm 6819* |
The intersection of a collection of infinite Cartesian products.
(Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon,
15-Feb-2023.)
|
| ⊢ (∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝑦) |
| |
| Theorem | ixp0x 6820 |
An infinite Cartesian product with an empty index set. (Contributed by
NM, 21-Sep-2007.)
|
| ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
| |
| Theorem | ixpssmap2g 6821* |
An infinite Cartesian product is a subset of set exponentiation. This
version of ixpssmapg 6822 avoids ax-coll 4163. (Contributed by Mario
Carneiro, 16-Nov-2014.)
|
| ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴)) |
| |
| Theorem | ixpssmapg 6822* |
An infinite Cartesian product is a subset of set exponentiation.
(Contributed by Jeff Madsen, 19-Jun-2011.)
|
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴)) |
| |
| Theorem | 0elixp 6823 |
Membership of the empty set in an infinite Cartesian product.
(Contributed by Steve Rodriguez, 29-Sep-2006.)
|
| ⊢ ∅ ∈ X𝑥 ∈ ∅ 𝐴 |
| |
| Theorem | ixpm 6824* |
If an infinite Cartesian product of a family 𝐵(𝑥) is inhabited,
every 𝐵(𝑥) is inhabited. (Contributed by Mario
Carneiro,
22-Jun-2016.) (Revised by Jim Kingdon, 16-Feb-2023.)
|
| ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
| |
| Theorem | ixp0 6825 |
The infinite Cartesian product of a family 𝐵(𝑥) with an empty
member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim
Kingdon, 16-Feb-2023.)
|
| ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈
𝐴 𝐵 = ∅) |
| |
| Theorem | ixpssmap 6826* |
An infinite Cartesian product is a subset of set exponentiation. Remark
in [Enderton] p. 54. (Contributed by
NM, 28-Sep-2006.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴) |
| |
| Theorem | resixp 6827* |
Restriction of an element of an infinite Cartesian product.
(Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro,
31-May-2014.)
|
| ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) |
| |
| Theorem | mptelixpg 6828* |
Condition for an explicit member of an indexed product. (Contributed by
Stefan O'Rear, 4-Jan-2015.)
|
| ⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑥 ∈ 𝐼 𝐾 ↔ ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) |
| |
| Theorem | elixpsn 6829* |
Membership in a class of singleton functions. (Contributed by Stefan
O'Rear, 24-Jan-2015.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐹 = {〈𝐴, 𝑦〉})) |
| |
| Theorem | ixpsnf1o 6830* |
A bijection between a class and single-point functions to it.
(Contributed by Stefan O'Rear, 24-Jan-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴) |
| |
| Theorem | mapsnf1o 6831* |
A bijection between a set and single-point functions to it.
(Contributed by Stefan O'Rear, 24-Jan-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼})) |
| |
| 2.6.28 Equinumerosity
|
| |
| Syntax | cen 6832 |
Extend class definition to include the equinumerosity relation
("approximately equals" symbol)
|
| class ≈ |
| |
| Syntax | cdom 6833 |
Extend class definition to include the dominance relation (curly
less-than-or-equal)
|
| class ≼ |
| |
| Syntax | cfn 6834 |
Extend class definition to include the class of all finite sets.
|
| class Fin |
| |
| Definition | df-en 6835* |
Define the equinumerosity relation. Definition of [Enderton] p. 129.
We define ≈ to be a binary relation rather
than a connective, so
its arguments must be sets to be meaningful. This is acceptable because
we do not consider equinumerosity for proper classes. We derive the
usual definition as bren 6842. (Contributed by NM, 28-Mar-1998.)
|
| ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| |
| Definition | df-dom 6836* |
Define the dominance relation. Compare Definition of [Enderton] p. 145.
Typical textbook definitions are derived as brdom 6846 and domen 6847.
(Contributed by NM, 28-Mar-1998.)
|
| ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} |
| |
| Definition | df-fin 6837* |
Define the (proper) class of all finite sets. Similar to Definition
10.29 of [TakeutiZaring] p. 91,
whose "Fin(a)" corresponds to
our "𝑎 ∈ Fin". This definition is
meaningful whether or not we
accept the Axiom of Infinity ax-inf2 15986. (Contributed by NM,
22-Aug-2008.)
|
| ⊢ Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} |
| |
| Theorem | relen 6838 |
Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.)
|
| ⊢ Rel ≈ |
| |
| Theorem | reldom 6839 |
Dominance is a relation. (Contributed by NM, 28-Mar-1998.)
|
| ⊢ Rel ≼ |
| |
| Theorem | encv 6840 |
If two classes are equinumerous, both classes are sets. (Contributed by
AV, 21-Mar-2019.)
|
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| |
| Theorem | breng 6841* |
Equinumerosity relation. This variation of bren 6842
does not require the
Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a
subproof of bren 6842. (Revised by BTernaryTau, 23-Sep-2024.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
| |
| Theorem | bren 6842* |
Equinumerosity relation. (Contributed by NM, 15-Jun-1998.)
|
| ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| |
| Theorem | brdom2g 6843* |
Dominance relation. This variation of brdomg 6844 does not require the
Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a
subproof of brdomg 6844. (Revised by BTernaryTau, 29-Nov-2024.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| |
| Theorem | brdomg 6844* |
Dominance relation. (Contributed by NM, 15-Jun-1998.)
|
| ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| |
| Theorem | brdomi 6845* |
Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.)
|
| ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| |
| Theorem | brdom 6846* |
Dominance relation. (Contributed by NM, 15-Jun-1998.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| |
| Theorem | domen 6847* |
Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146.
(Contributed by NM, 15-Jun-1998.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| |
| Theorem | domeng 6848* |
Dominance in terms of equinumerosity, with the sethood requirement
expressed as an antecedent. Example 1 of [Enderton] p. 146.
(Contributed by NM, 24-Apr-2004.)
|
| ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
| |
| Theorem | ctex 6849 |
A class dominated by ω is a set. See also ctfoex 7227 which says that
a countable class is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.)
(Proof shortened by Jim Kingdon, 13-Mar-2023.)
|
| ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| |
| Theorem | f1oen4g 6850 |
The domain and range of a one-to-one, onto set function are
equinumerous. This variation of f1oeng 6855 does not require the Axiom of
Collection nor the Axiom of Union. (Contributed by BTernaryTau,
7-Dec-2024.)
|
| ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| |
| Theorem | f1dom4g 6851 |
The domain of a one-to-one set function is dominated by its codomain
when the latter is a set. This variation of f1domg 6856 does not require
the Axiom of Collection nor the Axiom of Union. (Contributed by
BTernaryTau, 7-Dec-2024.)
|
| ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) |
| |
| Theorem | f1oen3g 6852 |
The domain and range of a one-to-one, onto function are equinumerous.
This variation of f1oeng 6855 does not require the Axiom of Replacement.
(Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro,
10-Sep-2015.)
|
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| |
| Theorem | f1oen2g 6853 |
The domain and range of a one-to-one, onto function are equinumerous.
This variation of f1oeng 6855 does not require the Axiom of Replacement.
(Contributed by Mario Carneiro, 10-Sep-2015.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| |
| Theorem | f1dom2g 6854 |
The domain of a one-to-one function is dominated by its codomain. This
variation of f1domg 6856 does not require the Axiom of Replacement.
(Contributed by Mario Carneiro, 24-Jun-2015.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) |
| |
| Theorem | f1oeng 6855 |
The domain and range of a one-to-one, onto function are equinumerous.
(Contributed by NM, 19-Jun-1998.)
|
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| |
| Theorem | f1domg 6856 |
The domain of a one-to-one function is dominated by its codomain.
(Contributed by NM, 4-Sep-2004.)
|
| ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) |
| |
| Theorem | f1oen 6857 |
The domain and range of a one-to-one, onto function are equinumerous.
(Contributed by NM, 19-Jun-1998.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
| |
| Theorem | f1dom 6858 |
The domain of a one-to-one function is dominated by its codomain.
(Contributed by NM, 19-Jun-1998.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵) |
| |
| Theorem | isfi 6859* |
Express "𝐴 is finite". Definition 10.29
of [TakeutiZaring] p. 91
(whose "Fin " is a predicate instead
of a class). (Contributed by
NM, 22-Aug-2008.)
|
| ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| |
| Theorem | enssdom 6860 |
Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.)
|
| ⊢ ≈ ⊆ ≼ |
| |
| Theorem | endom 6861 |
Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94.
(Contributed by NM, 28-May-1998.)
|
| ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| |
| Theorem | enrefg 6862 |
Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed
by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
|
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) |
| |
| Theorem | enref 6863 |
Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed
by NM, 25-Sep-2004.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ≈ 𝐴 |
| |
| Theorem | eqeng 6864 |
Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) |
| |
| Theorem | domrefg 6865 |
Dominance is reflexive. (Contributed by NM, 18-Jun-1998.)
|
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ 𝐴) |
| |
| Theorem | en2d 6866* |
Equinumerosity inference from an implicit one-to-one onto function.
(Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro,
12-May-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ V)) & ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ V)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| |
| Theorem | en3d 6867* |
Equinumerosity inference from an implicit one-to-one onto function.
(Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro,
12-May-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶))) ⇒ ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| |
| Theorem | en2i 6868* |
Equinumerosity inference from an implicit one-to-one onto function.
(Contributed by NM, 4-Jan-2004.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) & ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) ⇒ ⊢ 𝐴 ≈ 𝐵 |
| |
| Theorem | en3i 6869* |
Equinumerosity inference from an implicit one-to-one onto function.
(Contributed by NM, 19-Jul-2004.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)
& ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴)
& ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) ⇒ ⊢ 𝐴 ≈ 𝐵 |
| |
| Theorem | dom2lem 6870* |
A mapping (first hypothesis) that is one-to-one (second hypothesis)
implies its domain is dominated by its codomain. (Contributed by NM,
24-Jul-2004.)
|
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵) |
| |
| Theorem | dom2d 6871* |
A mapping (first hypothesis) that is one-to-one (second hypothesis)
implies its domain is dominated by its codomain. (Contributed by NM,
24-Jul-2004.) (Revised by Mario Carneiro, 20-May-2013.)
|
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) ⇒ ⊢ (𝜑 → (𝐵 ∈ 𝑅 → 𝐴 ≼ 𝐵)) |
| |
| Theorem | dom3d 6872* |
A mapping (first hypothesis) that is one-to-one (second hypothesis)
implies its domain is dominated by its codomain. (Contributed by Mario
Carneiro, 20-May-2013.)
|
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐴 ≼ 𝐵) |
| |
| Theorem | dom2 6873* |
A mapping (first hypothesis) that is one-to-one (second hypothesis)
implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be
read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their
distinct variable conditions. (Contributed by NM, 26-Oct-2003.)
|
| ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)
& ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐴 ≼ 𝐵) |
| |
| Theorem | dom3 6874* |
A mapping (first hypothesis) that is one-to-one (second hypothesis)
implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be
read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their
distinct variable conditions. (Contributed by Mario Carneiro,
20-May-2013.)
|
| ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)
& ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ 𝐵) |
| |
| Theorem | idssen 6875 |
Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ I ⊆ ≈ |
| |
| Theorem | domssr 6876 |
If 𝐶 is a superset of 𝐵 and
𝐵
dominates 𝐴, then 𝐶
also dominates 𝐴. (Contributed by BTernaryTau,
7-Dec-2024.)
|
| ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐶) |
| |
| Theorem | ssdomg 6877 |
A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed
by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
|
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| |
| Theorem | ener 6878 |
Equinumerosity is an equivalence relation. (Contributed by NM,
19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ ≈ Er V |
| |
| Theorem | ensymb 6879 |
Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by
Mario Carneiro, 26-Apr-2015.)
|
| ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) |
| |
| Theorem | ensym 6880 |
Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by
NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
|
| ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| |
| Theorem | ensymi 6881 |
Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed
by NM, 25-Sep-2004.)
|
| ⊢ 𝐴 ≈ 𝐵 ⇒ ⊢ 𝐵 ≈ 𝐴 |
| |
| Theorem | ensymd 6882 |
Symmetry of equinumerosity. Deduction form of ensym 6880. (Contributed
by David Moews, 1-May-2017.)
|
| ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| |
| Theorem | entr 6883 |
Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92.
(Contributed by NM, 9-Jun-1998.)
|
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| |
| Theorem | domtr 6884 |
Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94.
(Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro,
15-Nov-2014.)
|
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| |
| Theorem | entri 6885 |
A chained equinumerosity inference. (Contributed by NM,
25-Sep-2004.)
|
| ⊢ 𝐴 ≈ 𝐵
& ⊢ 𝐵 ≈ 𝐶 ⇒ ⊢ 𝐴 ≈ 𝐶 |
| |
| Theorem | entr2i 6886 |
A chained equinumerosity inference. (Contributed by NM,
25-Sep-2004.)
|
| ⊢ 𝐴 ≈ 𝐵
& ⊢ 𝐵 ≈ 𝐶 ⇒ ⊢ 𝐶 ≈ 𝐴 |
| |
| Theorem | entr3i 6887 |
A chained equinumerosity inference. (Contributed by NM,
25-Sep-2004.)
|
| ⊢ 𝐴 ≈ 𝐵
& ⊢ 𝐴 ≈ 𝐶 ⇒ ⊢ 𝐵 ≈ 𝐶 |
| |
| Theorem | entr4i 6888 |
A chained equinumerosity inference. (Contributed by NM,
25-Sep-2004.)
|
| ⊢ 𝐴 ≈ 𝐵
& ⊢ 𝐶 ≈ 𝐵 ⇒ ⊢ 𝐴 ≈ 𝐶 |
| |
| Theorem | endomtr 6889 |
Transitivity of equinumerosity and dominance. (Contributed by NM,
7-Jun-1998.)
|
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| |
| Theorem | domentr 6890 |
Transitivity of dominance and equinumerosity. (Contributed by NM,
7-Jun-1998.)
|
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
| |
| Theorem | f1imaeng 6891 |
A one-to-one function's image under a subset of its domain is equinumerous
to the subset. (Contributed by Mario Carneiro, 15-May-2015.)
|
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐹 “ 𝐶) ≈ 𝐶) |
| |
| Theorem | f1imaen2g 6892 |
A one-to-one function's image under a subset of its domain is equinumerous
to the subset. (This version of f1imaen 6893 does not need ax-setind 4589.)
(Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro,
25-Jun-2015.)
|
| ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 “ 𝐶) ≈ 𝐶) |
| |
| Theorem | f1imaen 6893 |
A one-to-one function's image under a subset of its domain is
equinumerous to the subset. (Contributed by NM, 30-Sep-2004.)
|
| ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 “ 𝐶) ≈ 𝐶) |
| |
| Theorem | en0 6894 |
The empty set is equinumerous only to itself. Exercise 1 of
[TakeutiZaring] p. 88.
(Contributed by NM, 27-May-1998.)
|
| ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
| |
| Theorem | ensn1 6895 |
A singleton is equinumerous to ordinal one. (Contributed by NM,
4-Nov-2002.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ≈ 1o |
| |
| Theorem | ensn1g 6896 |
A singleton is equinumerous to ordinal one. (Contributed by NM,
23-Apr-2004.)
|
| ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
| |
| Theorem | enpr1g 6897 |
{𝐴, 𝐴} has only one element.
(Contributed by FL, 15-Feb-2010.)
|
| ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐴} ≈ 1o) |
| |
| Theorem | en1 6898* |
A set is equinumerous to ordinal one iff it is a singleton.
(Contributed by NM, 25-Jul-2004.)
|
| ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
| |
| Theorem | en1bg 6899 |
A set is equinumerous to ordinal one iff it is a singleton.
(Contributed by Jim Kingdon, 13-Apr-2020.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴})) |
| |
| Theorem | reuen1 6900* |
Two ways to express "exactly one". (Contributed by Stefan O'Rear,
28-Oct-2014.)
|
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} ≈ 1o) |