Theorem List for Intuitionistic Logic Explorer - 6801-6900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | resixp 6801* |
Restriction of an element of an infinite Cartesian product.
(Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro,
31-May-2014.)
|
| ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) |
| |
| Theorem | mptelixpg 6802* |
Condition for an explicit member of an indexed product. (Contributed by
Stefan O'Rear, 4-Jan-2015.)
|
| ⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑥 ∈ 𝐼 𝐾 ↔ ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) |
| |
| Theorem | elixpsn 6803* |
Membership in a class of singleton functions. (Contributed by Stefan
O'Rear, 24-Jan-2015.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐹 = {〈𝐴, 𝑦〉})) |
| |
| Theorem | ixpsnf1o 6804* |
A bijection between a class and single-point functions to it.
(Contributed by Stefan O'Rear, 24-Jan-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴) |
| |
| Theorem | mapsnf1o 6805* |
A bijection between a set and single-point functions to it.
(Contributed by Stefan O'Rear, 24-Jan-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→(𝐴 ↑𝑚 {𝐼})) |
| |
| 2.6.28 Equinumerosity
|
| |
| Syntax | cen 6806 |
Extend class definition to include the equinumerosity relation
("approximately equals" symbol)
|
| class ≈ |
| |
| Syntax | cdom 6807 |
Extend class definition to include the dominance relation (curly
less-than-or-equal)
|
| class ≼ |
| |
| Syntax | cfn 6808 |
Extend class definition to include the class of all finite sets.
|
| class Fin |
| |
| Definition | df-en 6809* |
Define the equinumerosity relation. Definition of [Enderton] p. 129.
We define ≈ to be a binary relation rather
than a connective, so
its arguments must be sets to be meaningful. This is acceptable because
we do not consider equinumerosity for proper classes. We derive the
usual definition as bren 6815. (Contributed by NM, 28-Mar-1998.)
|
| ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| |
| Definition | df-dom 6810* |
Define the dominance relation. Compare Definition of [Enderton] p. 145.
Typical textbook definitions are derived as brdom 6818 and domen 6819.
(Contributed by NM, 28-Mar-1998.)
|
| ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} |
| |
| Definition | df-fin 6811* |
Define the (proper) class of all finite sets. Similar to Definition
10.29 of [TakeutiZaring] p. 91,
whose "Fin(a)" corresponds to
our "𝑎 ∈ Fin". This definition is
meaningful whether or not we
accept the Axiom of Infinity ax-inf2 15706. (Contributed by NM,
22-Aug-2008.)
|
| ⊢ Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} |
| |
| Theorem | relen 6812 |
Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.)
|
| ⊢ Rel ≈ |
| |
| Theorem | reldom 6813 |
Dominance is a relation. (Contributed by NM, 28-Mar-1998.)
|
| ⊢ Rel ≼ |
| |
| Theorem | encv 6814 |
If two classes are equinumerous, both classes are sets. (Contributed by
AV, 21-Mar-2019.)
|
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| |
| Theorem | bren 6815* |
Equinumerosity relation. (Contributed by NM, 15-Jun-1998.)
|
| ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| |
| Theorem | brdomg 6816* |
Dominance relation. (Contributed by NM, 15-Jun-1998.)
|
| ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| |
| Theorem | brdomi 6817* |
Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.)
|
| ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| |
| Theorem | brdom 6818* |
Dominance relation. (Contributed by NM, 15-Jun-1998.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| |
| Theorem | domen 6819* |
Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146.
(Contributed by NM, 15-Jun-1998.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| |
| Theorem | domeng 6820* |
Dominance in terms of equinumerosity, with the sethood requirement
expressed as an antecedent. Example 1 of [Enderton] p. 146.
(Contributed by NM, 24-Apr-2004.)
|
| ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
| |
| Theorem | ctex 6821 |
A class dominated by ω is a set. See also ctfoex 7193 which says that
a countable class is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.)
(Proof shortened by Jim Kingdon, 13-Mar-2023.)
|
| ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| |
| Theorem | f1oen3g 6822 |
The domain and range of a one-to-one, onto function are equinumerous.
This variation of f1oeng 6825 does not require the Axiom of Replacement.
(Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro,
10-Sep-2015.)
|
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| |
| Theorem | f1oen2g 6823 |
The domain and range of a one-to-one, onto function are equinumerous.
This variation of f1oeng 6825 does not require the Axiom of Replacement.
(Contributed by Mario Carneiro, 10-Sep-2015.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| |
| Theorem | f1dom2g 6824 |
The domain of a one-to-one function is dominated by its codomain. This
variation of f1domg 6826 does not require the Axiom of Replacement.
(Contributed by Mario Carneiro, 24-Jun-2015.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) |
| |
| Theorem | f1oeng 6825 |
The domain and range of a one-to-one, onto function are equinumerous.
(Contributed by NM, 19-Jun-1998.)
|
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| |
| Theorem | f1domg 6826 |
The domain of a one-to-one function is dominated by its codomain.
(Contributed by NM, 4-Sep-2004.)
|
| ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) |
| |
| Theorem | f1oen 6827 |
The domain and range of a one-to-one, onto function are equinumerous.
(Contributed by NM, 19-Jun-1998.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
| |
| Theorem | f1dom 6828 |
The domain of a one-to-one function is dominated by its codomain.
(Contributed by NM, 19-Jun-1998.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵) |
| |
| Theorem | isfi 6829* |
Express "𝐴 is finite". Definition 10.29
of [TakeutiZaring] p. 91
(whose "Fin " is a predicate instead
of a class). (Contributed by
NM, 22-Aug-2008.)
|
| ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| |
| Theorem | enssdom 6830 |
Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.)
|
| ⊢ ≈ ⊆ ≼ |
| |
| Theorem | endom 6831 |
Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94.
(Contributed by NM, 28-May-1998.)
|
| ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| |
| Theorem | enrefg 6832 |
Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed
by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
|
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) |
| |
| Theorem | enref 6833 |
Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed
by NM, 25-Sep-2004.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ≈ 𝐴 |
| |
| Theorem | eqeng 6834 |
Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) |
| |
| Theorem | domrefg 6835 |
Dominance is reflexive. (Contributed by NM, 18-Jun-1998.)
|
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ 𝐴) |
| |
| Theorem | en2d 6836* |
Equinumerosity inference from an implicit one-to-one onto function.
(Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro,
12-May-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ V)) & ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ V)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| |
| Theorem | en3d 6837* |
Equinumerosity inference from an implicit one-to-one onto function.
(Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro,
12-May-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶))) ⇒ ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| |
| Theorem | en2i 6838* |
Equinumerosity inference from an implicit one-to-one onto function.
(Contributed by NM, 4-Jan-2004.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) & ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) ⇒ ⊢ 𝐴 ≈ 𝐵 |
| |
| Theorem | en3i 6839* |
Equinumerosity inference from an implicit one-to-one onto function.
(Contributed by NM, 19-Jul-2004.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)
& ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴)
& ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) ⇒ ⊢ 𝐴 ≈ 𝐵 |
| |
| Theorem | dom2lem 6840* |
A mapping (first hypothesis) that is one-to-one (second hypothesis)
implies its domain is dominated by its codomain. (Contributed by NM,
24-Jul-2004.)
|
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵) |
| |
| Theorem | dom2d 6841* |
A mapping (first hypothesis) that is one-to-one (second hypothesis)
implies its domain is dominated by its codomain. (Contributed by NM,
24-Jul-2004.) (Revised by Mario Carneiro, 20-May-2013.)
|
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) ⇒ ⊢ (𝜑 → (𝐵 ∈ 𝑅 → 𝐴 ≼ 𝐵)) |
| |
| Theorem | dom3d 6842* |
A mapping (first hypothesis) that is one-to-one (second hypothesis)
implies its domain is dominated by its codomain. (Contributed by Mario
Carneiro, 20-May-2013.)
|
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐴 ≼ 𝐵) |
| |
| Theorem | dom2 6843* |
A mapping (first hypothesis) that is one-to-one (second hypothesis)
implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be
read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their
distinct variable conditions. (Contributed by NM, 26-Oct-2003.)
|
| ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)
& ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐴 ≼ 𝐵) |
| |
| Theorem | dom3 6844* |
A mapping (first hypothesis) that is one-to-one (second hypothesis)
implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be
read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their
distinct variable conditions. (Contributed by Mario Carneiro,
20-May-2013.)
|
| ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)
& ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ 𝐵) |
| |
| Theorem | idssen 6845 |
Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ I ⊆ ≈ |
| |
| Theorem | ssdomg 6846 |
A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed
by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
|
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| |
| Theorem | ener 6847 |
Equinumerosity is an equivalence relation. (Contributed by NM,
19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ ≈ Er V |
| |
| Theorem | ensymb 6848 |
Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by
Mario Carneiro, 26-Apr-2015.)
|
| ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) |
| |
| Theorem | ensym 6849 |
Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by
NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
|
| ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
| |
| Theorem | ensymi 6850 |
Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed
by NM, 25-Sep-2004.)
|
| ⊢ 𝐴 ≈ 𝐵 ⇒ ⊢ 𝐵 ≈ 𝐴 |
| |
| Theorem | ensymd 6851 |
Symmetry of equinumerosity. Deduction form of ensym 6849. (Contributed
by David Moews, 1-May-2017.)
|
| ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| |
| Theorem | entr 6852 |
Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92.
(Contributed by NM, 9-Jun-1998.)
|
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| |
| Theorem | domtr 6853 |
Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94.
(Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro,
15-Nov-2014.)
|
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| |
| Theorem | entri 6854 |
A chained equinumerosity inference. (Contributed by NM,
25-Sep-2004.)
|
| ⊢ 𝐴 ≈ 𝐵
& ⊢ 𝐵 ≈ 𝐶 ⇒ ⊢ 𝐴 ≈ 𝐶 |
| |
| Theorem | entr2i 6855 |
A chained equinumerosity inference. (Contributed by NM,
25-Sep-2004.)
|
| ⊢ 𝐴 ≈ 𝐵
& ⊢ 𝐵 ≈ 𝐶 ⇒ ⊢ 𝐶 ≈ 𝐴 |
| |
| Theorem | entr3i 6856 |
A chained equinumerosity inference. (Contributed by NM,
25-Sep-2004.)
|
| ⊢ 𝐴 ≈ 𝐵
& ⊢ 𝐴 ≈ 𝐶 ⇒ ⊢ 𝐵 ≈ 𝐶 |
| |
| Theorem | entr4i 6857 |
A chained equinumerosity inference. (Contributed by NM,
25-Sep-2004.)
|
| ⊢ 𝐴 ≈ 𝐵
& ⊢ 𝐶 ≈ 𝐵 ⇒ ⊢ 𝐴 ≈ 𝐶 |
| |
| Theorem | endomtr 6858 |
Transitivity of equinumerosity and dominance. (Contributed by NM,
7-Jun-1998.)
|
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| |
| Theorem | domentr 6859 |
Transitivity of dominance and equinumerosity. (Contributed by NM,
7-Jun-1998.)
|
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
| |
| Theorem | f1imaeng 6860 |
A one-to-one function's image under a subset of its domain is equinumerous
to the subset. (Contributed by Mario Carneiro, 15-May-2015.)
|
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐹 “ 𝐶) ≈ 𝐶) |
| |
| Theorem | f1imaen2g 6861 |
A one-to-one function's image under a subset of its domain is equinumerous
to the subset. (This version of f1imaen 6862 does not need ax-setind 4574.)
(Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro,
25-Jun-2015.)
|
| ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 “ 𝐶) ≈ 𝐶) |
| |
| Theorem | f1imaen 6862 |
A one-to-one function's image under a subset of its domain is
equinumerous to the subset. (Contributed by NM, 30-Sep-2004.)
|
| ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 “ 𝐶) ≈ 𝐶) |
| |
| Theorem | en0 6863 |
The empty set is equinumerous only to itself. Exercise 1 of
[TakeutiZaring] p. 88.
(Contributed by NM, 27-May-1998.)
|
| ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
| |
| Theorem | ensn1 6864 |
A singleton is equinumerous to ordinal one. (Contributed by NM,
4-Nov-2002.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ≈ 1o |
| |
| Theorem | ensn1g 6865 |
A singleton is equinumerous to ordinal one. (Contributed by NM,
23-Apr-2004.)
|
| ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
| |
| Theorem | enpr1g 6866 |
{𝐴, 𝐴} has only one element.
(Contributed by FL, 15-Feb-2010.)
|
| ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐴} ≈ 1o) |
| |
| Theorem | en1 6867* |
A set is equinumerous to ordinal one iff it is a singleton.
(Contributed by NM, 25-Jul-2004.)
|
| ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
| |
| Theorem | en1bg 6868 |
A set is equinumerous to ordinal one iff it is a singleton.
(Contributed by Jim Kingdon, 13-Apr-2020.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴})) |
| |
| Theorem | reuen1 6869* |
Two ways to express "exactly one". (Contributed by Stefan O'Rear,
28-Oct-2014.)
|
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} ≈ 1o) |
| |
| Theorem | euen1 6870 |
Two ways to express "exactly one". (Contributed by Stefan O'Rear,
28-Oct-2014.)
|
| ⊢ (∃!𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≈ 1o) |
| |
| Theorem | euen1b 6871* |
Two ways to express "𝐴 has a unique element".
(Contributed by
Mario Carneiro, 9-Apr-2015.)
|
| ⊢ (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥 ∈ 𝐴) |
| |
| Theorem | en1uniel 6872 |
A singleton contains its sole element. (Contributed by Stefan O'Rear,
16-Aug-2015.)
|
| ⊢ (𝑆 ≈ 1o → ∪ 𝑆
∈ 𝑆) |
| |
| Theorem | 2dom 6873* |
A set that dominates ordinal 2 has at least 2 different members.
(Contributed by NM, 25-Jul-2004.)
|
| ⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| |
| Theorem | fundmen 6874 |
A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98.
(Contributed by NM, 28-Jul-2004.) (Revised by Mario Carneiro,
15-Nov-2014.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ (Fun 𝐹 → dom 𝐹 ≈ 𝐹) |
| |
| Theorem | fundmeng 6875 |
A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98.
(Contributed by NM, 17-Sep-2013.)
|
| ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) |
| |
| Theorem | cnven 6876 |
A relational set is equinumerous to its converse. (Contributed by Mario
Carneiro, 28-Dec-2014.)
|
| ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ ◡𝐴) |
| |
| Theorem | cnvct 6877 |
If a set is dominated by ω, so is its converse.
(Contributed by
Thierry Arnoux, 29-Dec-2016.)
|
| ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) |
| |
| Theorem | fndmeng 6878 |
A function is equinumerate to its domain. (Contributed by Paul Chapman,
22-Jun-2011.)
|
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐴 ≈ 𝐹) |
| |
| Theorem | mapsnen 6879 |
Set exponentiation to a singleton exponent is equinumerous to its base.
Exercise 4.43 of [Mendelson] p. 255.
(Contributed by NM, 17-Dec-2003.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴 ↑𝑚 {𝐵}) ≈ 𝐴 |
| |
| Theorem | map1 6880 |
Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1.
Exercise 4.42(b) of [Mendelson] p.
255. (Contributed by NM,
17-Dec-2003.)
|
| ⊢ (𝐴 ∈ 𝑉 → (1o
↑𝑚 𝐴) ≈ 1o) |
| |
| Theorem | en2sn 6881 |
Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.)
|
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
| |
| Theorem | snfig 6882 |
A singleton is finite. For the proper class case, see snprc 3688.
(Contributed by Jim Kingdon, 13-Apr-2020.)
|
| ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
| |
| Theorem | fiprc 6883 |
The class of finite sets is a proper class. (Contributed by Jeff
Hankins, 3-Oct-2008.)
|
| ⊢ Fin ∉ V |
| |
| Theorem | unen 6884 |
Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92.
(Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
| ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
| |
| Theorem | enpr2d 6885 |
A pair with distinct elements is equinumerous to ordinal two.
(Contributed by Rohan Ridenour, 3-Aug-2023.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐶)
& ⊢ (𝜑 → 𝐵 ∈ 𝐷)
& ⊢ (𝜑 → ¬ 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
| |
| Theorem | ssct 6886 |
A subset of a set dominated by ω is dominated by
ω.
(Contributed by Thierry Arnoux, 31-Jan-2017.)
|
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
| |
| Theorem | 1domsn 6887 |
A singleton (whether of a set or a proper class) is dominated by one.
(Contributed by Jim Kingdon, 1-Mar-2022.)
|
| ⊢ {𝐴} ≼ 1o |
| |
| Theorem | enm 6888* |
A set equinumerous to an inhabited set is inhabited. (Contributed by
Jim Kingdon, 19-May-2020.)
|
| ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
| |
| Theorem | xpsnen 6889 |
A set is equinumerous to its Cartesian product with a singleton.
Proposition 4.22(c) of [Mendelson] p.
254. (Contributed by NM,
4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴 × {𝐵}) ≈ 𝐴 |
| |
| Theorem | xpsneng 6890 |
A set is equinumerous to its Cartesian product with a singleton.
Proposition 4.22(c) of [Mendelson] p.
254. (Contributed by NM,
22-Oct-2004.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × {𝐵}) ≈ 𝐴) |
| |
| Theorem | xp1en 6891 |
One times a cardinal number. (Contributed by NM, 27-Sep-2004.) (Revised
by Mario Carneiro, 29-Apr-2015.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 1o) ≈ 𝐴) |
| |
| Theorem | endisj 6892* |
Any two sets are equinumerous to disjoint sets. Exercise 4.39 of
[Mendelson] p. 255. (Contributed by
NM, 16-Apr-2004.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
| |
| Theorem | xpcomf1o 6893* |
The canonical bijection from (𝐴 × 𝐵) to (𝐵 × 𝐴).
(Contributed by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪
◡{𝑥}) ⇒ ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
| |
| Theorem | xpcomco 6894* |
Composition with the bijection of xpcomf1o 6893 swaps the arguments to a
mapping. (Contributed by Mario Carneiro, 30-May-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪
◡{𝑥})
& ⊢ 𝐺 = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐴 ↦ 𝐶) ⇒ ⊢ (𝐺 ∘ 𝐹) = (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| |
| Theorem | xpcomen 6895 |
Commutative law for equinumerosity of Cartesian product. Proposition
4.22(d) of [Mendelson] p. 254.
(Contributed by NM, 5-Jan-2004.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) |
| |
| Theorem | xpcomeng 6896 |
Commutative law for equinumerosity of Cartesian product. Proposition
4.22(d) of [Mendelson] p. 254.
(Contributed by NM, 27-Mar-2006.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) |
| |
| Theorem | xpsnen2g 6897 |
A set is equinumerous to its Cartesian product with a singleton on the
left. (Contributed by Stefan O'Rear, 21-Nov-2014.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ 𝐵) |
| |
| Theorem | xpassen 6898 |
Associative law for equinumerosity of Cartesian product. Proposition
4.22(e) of [Mendelson] p. 254.
(Contributed by NM, 22-Jan-2004.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈
V ⇒ ⊢ ((𝐴 × 𝐵) × 𝐶) ≈ (𝐴 × (𝐵 × 𝐶)) |
| |
| Theorem | xpdom2 6899 |
Dominance law for Cartesian product. Proposition 10.33(2) of
[TakeutiZaring] p. 92.
(Contributed by NM, 24-Jul-2004.) (Revised by
Mario Carneiro, 15-Nov-2014.)
|
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) |
| |
| Theorem | xpdom2g 6900 |
Dominance law for Cartesian product. Theorem 6L(c) of [Enderton]
p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.)
|
| ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) |