Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  012of GIF version

Theorem 012of 16004
Description: Mapping zero and one between 0 and ω style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
Hypothesis
Ref Expression
012of.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
012of (𝐺 ↾ {0, 1}):{0, 1}⟶2o

Proof of Theorem 012of
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 012of.g . . . . . 6 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
21frechashgf1o 10580 . . . . 5 𝐺:ω–1-1-onto→ℕ0
3 f1ocnv 5542 . . . . 5 (𝐺:ω–1-1-onto→ℕ0𝐺:ℕ01-1-onto→ω)
4 f1of 5529 . . . . 5 (𝐺:ℕ01-1-onto→ω → 𝐺:ℕ0⟶ω)
52, 3, 4mp2b 8 . . . 4 𝐺:ℕ0⟶ω
6 0nn0 9317 . . . . 5 0 ∈ ℕ0
7 1nn0 9318 . . . . 5 1 ∈ ℕ0
8 prssi 3793 . . . . 5 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ⊆ ℕ0)
96, 7, 8mp2an 426 . . . 4 {0, 1} ⊆ ℕ0
10 fssres 5458 . . . 4 ((𝐺:ℕ0⟶ω ∧ {0, 1} ⊆ ℕ0) → (𝐺 ↾ {0, 1}):{0, 1}⟶ω)
115, 9, 10mp2an 426 . . 3 (𝐺 ↾ {0, 1}):{0, 1}⟶ω
12 ffn 5431 . . 3 ((𝐺 ↾ {0, 1}):{0, 1}⟶ω → (𝐺 ↾ {0, 1}) Fn {0, 1})
1311, 12ax-mp 5 . 2 (𝐺 ↾ {0, 1}) Fn {0, 1}
14 fvres 5607 . . . 4 (𝑗 ∈ {0, 1} → ((𝐺 ↾ {0, 1})‘𝑗) = (𝐺𝑗))
15 elpri 3657 . . . . 5 (𝑗 ∈ {0, 1} → (𝑗 = 0 ∨ 𝑗 = 1))
16 fveq2 5583 . . . . . . 7 (𝑗 = 0 → (𝐺𝑗) = (𝐺‘0))
17 0zd 9391 . . . . . . . . . . 11 (⊤ → 0 ∈ ℤ)
1817, 1frec2uz0d 10551 . . . . . . . . . 10 (⊤ → (𝐺‘∅) = 0)
1918mptru 1382 . . . . . . . . 9 (𝐺‘∅) = 0
20 peano1 4646 . . . . . . . . . 10 ∅ ∈ ω
21 f1ocnvfv 5855 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→ℕ0 ∧ ∅ ∈ ω) → ((𝐺‘∅) = 0 → (𝐺‘0) = ∅))
222, 20, 21mp2an 426 . . . . . . . . 9 ((𝐺‘∅) = 0 → (𝐺‘0) = ∅)
2319, 22ax-mp 5 . . . . . . . 8 (𝐺‘0) = ∅
24 0lt2o 6534 . . . . . . . 8 ∅ ∈ 2o
2523, 24eqeltri 2279 . . . . . . 7 (𝐺‘0) ∈ 2o
2616, 25eqeltrdi 2297 . . . . . 6 (𝑗 = 0 → (𝐺𝑗) ∈ 2o)
27 fveq2 5583 . . . . . . 7 (𝑗 = 1 → (𝐺𝑗) = (𝐺‘1))
28 df-1o 6509 . . . . . . . . . . 11 1o = suc ∅
2928fveq2i 5586 . . . . . . . . . 10 (𝐺‘1o) = (𝐺‘suc ∅)
3020a1i 9 . . . . . . . . . . . 12 (⊤ → ∅ ∈ ω)
3117, 1, 30frec2uzsucd 10553 . . . . . . . . . . 11 (⊤ → (𝐺‘suc ∅) = ((𝐺‘∅) + 1))
3231mptru 1382 . . . . . . . . . 10 (𝐺‘suc ∅) = ((𝐺‘∅) + 1)
3319oveq1i 5961 . . . . . . . . . . 11 ((𝐺‘∅) + 1) = (0 + 1)
34 0p1e1 9157 . . . . . . . . . . 11 (0 + 1) = 1
3533, 34eqtri 2227 . . . . . . . . . 10 ((𝐺‘∅) + 1) = 1
3629, 32, 353eqtri 2231 . . . . . . . . 9 (𝐺‘1o) = 1
37 1onn 6613 . . . . . . . . . 10 1o ∈ ω
38 f1ocnvfv 5855 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→ℕ0 ∧ 1o ∈ ω) → ((𝐺‘1o) = 1 → (𝐺‘1) = 1o))
392, 37, 38mp2an 426 . . . . . . . . 9 ((𝐺‘1o) = 1 → (𝐺‘1) = 1o)
4036, 39ax-mp 5 . . . . . . . 8 (𝐺‘1) = 1o
41 1lt2o 6535 . . . . . . . 8 1o ∈ 2o
4240, 41eqeltri 2279 . . . . . . 7 (𝐺‘1) ∈ 2o
4327, 42eqeltrdi 2297 . . . . . 6 (𝑗 = 1 → (𝐺𝑗) ∈ 2o)
4426, 43jaoi 718 . . . . 5 ((𝑗 = 0 ∨ 𝑗 = 1) → (𝐺𝑗) ∈ 2o)
4515, 44syl 14 . . . 4 (𝑗 ∈ {0, 1} → (𝐺𝑗) ∈ 2o)
4614, 45eqeltrd 2283 . . 3 (𝑗 ∈ {0, 1} → ((𝐺 ↾ {0, 1})‘𝑗) ∈ 2o)
4746rgen 2560 . 2 𝑗 ∈ {0, 1} ((𝐺 ↾ {0, 1})‘𝑗) ∈ 2o
48 ffnfv 5745 . 2 ((𝐺 ↾ {0, 1}):{0, 1}⟶2o ↔ ((𝐺 ↾ {0, 1}) Fn {0, 1} ∧ ∀𝑗 ∈ {0, 1} ((𝐺 ↾ {0, 1})‘𝑗) ∈ 2o))
4913, 47, 48mpbir2an 945 1 (𝐺 ↾ {0, 1}):{0, 1}⟶2o
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710   = wceq 1373  wtru 1374  wcel 2177  wral 2485  wss 3167  c0 3461  {cpr 3635  cmpt 4109  suc csuc 4416  ωcom 4642  ccnv 4678  cres 4681   Fn wfn 5271  wf 5272  1-1-ontowf1o 5275  cfv 5276  (class class class)co 5951  freccfrec 6483  1oc1o 6502  2oc2o 6503  0cc0 7932  1c1 7933   + caddc 7935  0cn0 9302  cz 9379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-recs 6398  df-frec 6484  df-1o 6509  df-2o 6510  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-n0 9303  df-z 9380  df-uz 9656
This theorem is referenced by:  isomninnlem  16043  iswomninnlem  16062  ismkvnnlem  16065
  Copyright terms: Public domain W3C validator