![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1idssfct | GIF version |
Description: The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
1idssfct | ⊢ (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8327 | . . 3 ⊢ 1 ∈ ℕ | |
2 | nnz 8665 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | 1dvds 10590 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∥ 𝑁) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℕ → 1 ∥ 𝑁) |
5 | breq1 3814 | . . . . 5 ⊢ (𝑛 = 1 → (𝑛 ∥ 𝑁 ↔ 1 ∥ 𝑁)) | |
6 | 5 | elrab 2759 | . . . 4 ⊢ (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ↔ (1 ∈ ℕ ∧ 1 ∥ 𝑁)) |
7 | 6 | biimpri 131 | . . 3 ⊢ ((1 ∈ ℕ ∧ 1 ∥ 𝑁) → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
8 | 1, 4, 7 | sylancr 405 | . 2 ⊢ (𝑁 ∈ ℕ → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
9 | iddvds 10589 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) | |
10 | 2, 9 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∥ 𝑁) |
11 | breq1 3814 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑛 ∥ 𝑁 ↔ 𝑁 ∥ 𝑁)) | |
12 | 11 | elrab 2759 | . . . 4 ⊢ (𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ↔ (𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑁)) |
13 | 12 | biimpri 131 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑁) → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
14 | 10, 13 | mpdan 412 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
15 | prssi 3569 | . 2 ⊢ ((1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ∧ 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) | |
16 | 8, 14, 15 | syl2anc 403 | 1 ⊢ (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1434 {crab 2357 ⊆ wss 2984 {cpr 3423 class class class wbr 3811 1c1 7254 ℕcn 8316 ℤcz 8646 ∥ cdvds 10576 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-cnex 7339 ax-resscn 7340 ax-1cn 7341 ax-1re 7342 ax-icn 7343 ax-addcl 7344 ax-addrcl 7345 ax-mulcl 7346 ax-addcom 7348 ax-mulcom 7349 ax-addass 7350 ax-mulass 7351 ax-distr 7352 ax-i2m1 7353 ax-0lt1 7354 ax-1rid 7355 ax-0id 7356 ax-rnegex 7357 ax-cnre 7359 ax-pre-ltirr 7360 ax-pre-ltwlin 7361 ax-pre-lttrn 7362 ax-pre-ltadd 7364 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-br 3812 df-opab 3866 df-id 4084 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-iota 4934 df-fun 4971 df-fv 4977 df-riota 5547 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-pnf 7427 df-mnf 7428 df-xr 7429 df-ltxr 7430 df-le 7431 df-sub 7558 df-neg 7559 df-inn 8317 df-z 8647 df-dvds 10577 |
This theorem is referenced by: isprm2 10879 |
Copyright terms: Public domain | W3C validator |