ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idssfct GIF version

Theorem 1idssfct 11807
Description: The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
1idssfct (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
Distinct variable group:   𝑛,𝑁

Proof of Theorem 1idssfct
StepHypRef Expression
1 1nn 8743 . . 3 1 ∈ ℕ
2 nnz 9085 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
3 1dvds 11518 . . . 4 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
42, 3syl 14 . . 3 (𝑁 ∈ ℕ → 1 ∥ 𝑁)
5 breq1 3932 . . . . 5 (𝑛 = 1 → (𝑛𝑁 ↔ 1 ∥ 𝑁))
65elrab 2840 . . . 4 (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} ↔ (1 ∈ ℕ ∧ 1 ∥ 𝑁))
76biimpri 132 . . 3 ((1 ∈ ℕ ∧ 1 ∥ 𝑁) → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
81, 4, 7sylancr 410 . 2 (𝑁 ∈ ℕ → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
9 iddvds 11517 . . . 4 (𝑁 ∈ ℤ → 𝑁𝑁)
102, 9syl 14 . . 3 (𝑁 ∈ ℕ → 𝑁𝑁)
11 breq1 3932 . . . . 5 (𝑛 = 𝑁 → (𝑛𝑁𝑁𝑁))
1211elrab 2840 . . . 4 (𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} ↔ (𝑁 ∈ ℕ ∧ 𝑁𝑁))
1312biimpri 132 . . 3 ((𝑁 ∈ ℕ ∧ 𝑁𝑁) → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
1410, 13mpdan 417 . 2 (𝑁 ∈ ℕ → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
15 prssi 3678 . 2 ((1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} ∧ 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁}) → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
168, 14, 15syl2anc 408 1 (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1480  {crab 2420  wss 3071  {cpr 3528   class class class wbr 3929  1c1 7633  cn 8732  cz 9066  cdvds 11504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-ltadd 7748
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-z 9067  df-dvds 11505
This theorem is referenced by:  isprm2  11809
  Copyright terms: Public domain W3C validator