ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcnex GIF version

Theorem axcnex 7888
Description: The complex numbers form a set. Use cnex 7965 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Assertion
Ref Expression
axcnex ℂ ∈ V

Proof of Theorem axcnex
StepHypRef Expression
1 df-c 7847 . 2 ℂ = (R × R)
2 df-nr 7756 . . . 4 R = ((P × P) / ~R )
3 npex 7502 . . . . . . 7 P ∈ V
43, 3xpex 4759 . . . . . 6 (P × P) ∈ V
54pwex 4201 . . . . 5 𝒫 (P × P) ∈ V
6 enrer 7764 . . . . . . . 8 ~R Er (P × P)
76a1i 9 . . . . . . 7 (⊤ → ~R Er (P × P))
87qsss 6620 . . . . . 6 (⊤ → ((P × P) / ~R ) ⊆ 𝒫 (P × P))
98mptru 1373 . . . . 5 ((P × P) / ~R ) ⊆ 𝒫 (P × P)
105, 9ssexi 4156 . . . 4 ((P × P) / ~R ) ∈ V
112, 10eqeltri 2262 . . 3 R ∈ V
1211, 11xpex 4759 . 2 (R × R) ∈ V
131, 12eqeltri 2262 1 ℂ ∈ V
Colors of variables: wff set class
Syntax hints:  wtru 1365  wcel 2160  Vcvv 2752  wss 3144  𝒫 cpw 3590   × cxp 4642   Er wer 6556   / cqs 6558  Pcnp 7320   ~R cer 7325  Rcnr 7326  cc 7839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-irdg 6395  df-1o 6441  df-2o 6442  df-oadd 6445  df-omul 6446  df-er 6559  df-ec 6561  df-qs 6565  df-ni 7333  df-pli 7334  df-mi 7335  df-lti 7336  df-plpq 7373  df-mpq 7374  df-enq 7376  df-nqqs 7377  df-plqqs 7378  df-mqqs 7379  df-1nqqs 7380  df-rq 7381  df-ltnqqs 7382  df-enq0 7453  df-nq0 7454  df-0nq0 7455  df-plq0 7456  df-mq0 7457  df-inp 7495  df-iplp 7497  df-enr 7755  df-nr 7756  df-c 7847
This theorem is referenced by:  peano5nnnn  7921
  Copyright terms: Public domain W3C validator