| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axcnex | GIF version | ||
| Description: The complex numbers form a set. Use cnex 8062 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axcnex | ⊢ ℂ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 7944 | . 2 ⊢ ℂ = (R × R) | |
| 2 | df-nr 7853 | . . . 4 ⊢ R = ((P × P) / ~R ) | |
| 3 | npex 7599 | . . . . . . 7 ⊢ P ∈ V | |
| 4 | 3, 3 | xpex 4795 | . . . . . 6 ⊢ (P × P) ∈ V |
| 5 | 4 | pwex 4232 | . . . . 5 ⊢ 𝒫 (P × P) ∈ V |
| 6 | enrer 7861 | . . . . . . . 8 ⊢ ~R Er (P × P) | |
| 7 | 6 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ~R Er (P × P)) |
| 8 | 7 | qsss 6691 | . . . . . 6 ⊢ (⊤ → ((P × P) / ~R ) ⊆ 𝒫 (P × P)) |
| 9 | 8 | mptru 1382 | . . . . 5 ⊢ ((P × P) / ~R ) ⊆ 𝒫 (P × P) |
| 10 | 5, 9 | ssexi 4187 | . . . 4 ⊢ ((P × P) / ~R ) ∈ V |
| 11 | 2, 10 | eqeltri 2279 | . . 3 ⊢ R ∈ V |
| 12 | 11, 11 | xpex 4795 | . 2 ⊢ (R × R) ∈ V |
| 13 | 1, 12 | eqeltri 2279 | 1 ⊢ ℂ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1374 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3168 𝒫 cpw 3618 × cxp 4678 Er wer 6627 / cqs 6629 Pcnp 7417 ~R cer 7422 Rcnr 7423 ℂcc 7936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-eprel 4341 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-1o 6512 df-2o 6513 df-oadd 6516 df-omul 6517 df-er 6630 df-ec 6632 df-qs 6636 df-ni 7430 df-pli 7431 df-mi 7432 df-lti 7433 df-plpq 7470 df-mpq 7471 df-enq 7473 df-nqqs 7474 df-plqqs 7475 df-mqqs 7476 df-1nqqs 7477 df-rq 7478 df-ltnqqs 7479 df-enq0 7550 df-nq0 7551 df-0nq0 7552 df-plq0 7553 df-mq0 7554 df-inp 7592 df-iplp 7594 df-enr 7852 df-nr 7853 df-c 7944 |
| This theorem is referenced by: peano5nnnn 8018 |
| Copyright terms: Public domain | W3C validator |