| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mplbasss | GIF version | ||
| Description: The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| mplval2.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplval2.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| mplval2.u | ⊢ 𝑈 = (Base‘𝑃) |
| mplbasss.b | ⊢ 𝐵 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| mplbasss | ⊢ 𝑈 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldmmpl 14661 | . . . . . . 7 ⊢ Rel dom mPoly | |
| 2 | fnmpl 14665 | . . . . . . . 8 ⊢ mPoly Fn (V × V) | |
| 3 | fnrel 5419 | . . . . . . . 8 ⊢ ( mPoly Fn (V × V) → Rel mPoly ) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . . 7 ⊢ Rel mPoly |
| 5 | mplval2.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 6 | mplval2.u | . . . . . . 7 ⊢ 𝑈 = (Base‘𝑃) | |
| 7 | 1, 4, 5, 6 | relelbasov 13103 | . . . . . 6 ⊢ (𝑥 ∈ 𝑈 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 8 | mplval2.s | . . . . . . 7 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 9 | mplbasss.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑆) | |
| 10 | eqid 2229 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 11 | 5, 8, 9, 10, 6 | mplbascoe 14663 | . . . . . 6 ⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑈 = {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑅))}) |
| 12 | 7, 11 | syl 14 | . . . . 5 ⊢ (𝑥 ∈ 𝑈 → 𝑈 = {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑅))}) |
| 13 | ssrab2 3309 | . . . . 5 ⊢ {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑅))} ⊆ 𝐵 | |
| 14 | 12, 13 | eqsstrdi 3276 | . . . 4 ⊢ (𝑥 ∈ 𝑈 → 𝑈 ⊆ 𝐵) |
| 15 | 14 | sseld 3223 | . . 3 ⊢ (𝑥 ∈ 𝑈 → (𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐵)) |
| 16 | 15 | pm2.43i 49 | . 2 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐵) |
| 17 | 16 | ssriv 3228 | 1 ⊢ 𝑈 ⊆ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 {crab 2512 Vcvv 2799 ⊆ wss 3197 class class class wbr 4083 × cxp 4717 Rel wrel 4724 Fn wfn 5313 ‘cfv 5318 (class class class)co 6007 ↑𝑚 cmap 6803 < clt 8189 ℕ0cn0 9377 Basecbs 13040 0gc0g 13297 mPwSer cmps 14633 mPoly cmpl 14634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-i2m1 8112 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-of 6224 df-1st 6292 df-2nd 6293 df-map 6805 df-ixp 6854 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-tset 13137 df-rest 13282 df-topn 13283 df-topgen 13301 df-pt 13302 df-psr 14635 df-mplcoe 14636 |
| This theorem is referenced by: mplelf 14669 mplsubgfilemcl 14671 mplsubgfileminv 14672 mplsubgfi 14673 mpladd 14676 mplnegfi 14677 |
| Copyright terms: Public domain | W3C validator |