| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > psraddcl | GIF version | ||
| Description: Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.) | 
| Ref | Expression | 
|---|---|
| psraddcl.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | 
| psraddcl.b | ⊢ 𝐵 = (Base‘𝑆) | 
| psraddcl.p | ⊢ + = (+g‘𝑆) | 
| psraddcl.r | ⊢ (𝜑 → 𝑅 ∈ Mgm) | 
| psraddcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| psraddcl.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| Ref | Expression | 
|---|---|
| psraddcl | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | psraddcl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Mgm) | |
| 2 | eqid 2196 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2196 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | 2, 3 | mgmcl 13002 | . . . . . 6 ⊢ ((𝑅 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) | 
| 5 | 4 | 3expb 1206 | . . . . 5 ⊢ ((𝑅 ∈ Mgm ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) | 
| 6 | 1, 5 | sylan 283 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) | 
| 7 | psraddcl.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 8 | eqid 2196 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 9 | psraddcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
| 10 | psraddcl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | 7, 2, 8, 9, 10 | psrelbas 14228 | . . . 4 ⊢ (𝜑 → 𝑋:{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) | 
| 12 | psraddcl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 13 | 7, 2, 8, 9, 12 | psrelbas 14228 | . . . 4 ⊢ (𝜑 → 𝑌:{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) | 
| 14 | fnmap 6714 | . . . . . 6 ⊢ ↑𝑚 Fn (V × V) | |
| 15 | nn0ex 9255 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 16 | reldmpsr 14219 | . . . . . . . . 9 ⊢ Rel dom mPwSer | |
| 17 | fnpsr 14221 | . . . . . . . . . 10 ⊢ mPwSer Fn (V × V) | |
| 18 | fnrel 5356 | . . . . . . . . . 10 ⊢ ( mPwSer Fn (V × V) → Rel mPwSer ) | |
| 19 | 17, 18 | ax-mp 5 | . . . . . . . . 9 ⊢ Rel mPwSer | 
| 20 | 16, 19, 7, 9 | relelbasov 12740 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) | 
| 21 | 10, 20 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) | 
| 22 | 21 | simpld 112 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) | 
| 23 | fnovex 5955 | . . . . . 6 ⊢ (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0 ↑𝑚 𝐼) ∈ V) | |
| 24 | 14, 15, 22, 23 | mp3an12i 1352 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑𝑚 𝐼) ∈ V) | 
| 25 | rabexg 4176 | . . . . 5 ⊢ ((ℕ0 ↑𝑚 𝐼) ∈ V → {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) | |
| 26 | 24, 25 | syl 14 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) | 
| 27 | inidm 3372 | . . . 4 ⊢ ({𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 28 | 6, 11, 13, 26, 26, 27 | off 6148 | . . 3 ⊢ (𝜑 → (𝑋 ∘𝑓 (+g‘𝑅)𝑌):{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) | 
| 29 | basfn 12736 | . . . . 5 ⊢ Base Fn V | |
| 30 | 1 | elexd 2776 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) | 
| 31 | funfvex 5575 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 32 | 31 | funfni 5358 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) | 
| 33 | 29, 30, 32 | sylancr 414 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) ∈ V) | 
| 34 | 33, 26 | elmapd 6721 | . . 3 ⊢ (𝜑 → ((𝑋 ∘𝑓 (+g‘𝑅)𝑌) ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ (𝑋 ∘𝑓 (+g‘𝑅)𝑌):{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))) | 
| 35 | 28, 34 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑋 ∘𝑓 (+g‘𝑅)𝑌) ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) | 
| 36 | psraddcl.p | . . 3 ⊢ + = (+g‘𝑆) | |
| 37 | 7, 9, 3, 36, 10, 12 | psradd 14231 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑋 ∘𝑓 (+g‘𝑅)𝑌)) | 
| 38 | 7, 2, 8, 9, 22, 1 | psrbasg 14227 | . 2 ⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) | 
| 39 | 35, 37, 38 | 3eltr4d 2280 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {crab 2479 Vcvv 2763 × cxp 4661 ◡ccnv 4662 “ cima 4666 Rel wrel 4668 Fn wfn 5253 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 ∘𝑓 cof 6133 ↑𝑚 cmap 6707 Fincfn 6799 ℕcn 8990 ℕ0cn0 9249 Basecbs 12678 +gcplusg 12755 Mgmcmgm 12997 mPwSer cmps 14217 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-map 6709 df-ixp 6758 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-struct 12680 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-tset 12774 df-rest 12912 df-topn 12913 df-topgen 12931 df-pt 12932 df-mgm 12999 df-psr 14218 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |