| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psraddcl | GIF version | ||
| Description: Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.) |
| Ref | Expression |
|---|---|
| psraddcl.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psraddcl.b | ⊢ 𝐵 = (Base‘𝑆) |
| psraddcl.p | ⊢ + = (+g‘𝑆) |
| psraddcl.r | ⊢ (𝜑 → 𝑅 ∈ Mgm) |
| psraddcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| psraddcl.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| psraddcl | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psraddcl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Mgm) | |
| 2 | eqid 2206 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2206 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | 2, 3 | mgmcl 13266 | . . . . . 6 ⊢ ((𝑅 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 5 | 4 | 3expb 1207 | . . . . 5 ⊢ ((𝑅 ∈ Mgm ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 6 | 1, 5 | sylan 283 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 7 | psraddcl.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 8 | eqid 2206 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 9 | psraddcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
| 10 | psraddcl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | 7, 2, 8, 9, 10 | psrelbas 14512 | . . . 4 ⊢ (𝜑 → 𝑋:{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 12 | psraddcl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 13 | 7, 2, 8, 9, 12 | psrelbas 14512 | . . . 4 ⊢ (𝜑 → 𝑌:{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 14 | fnmap 6755 | . . . . . 6 ⊢ ↑𝑚 Fn (V × V) | |
| 15 | nn0ex 9321 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 16 | reldmpsr 14502 | . . . . . . . . 9 ⊢ Rel dom mPwSer | |
| 17 | fnpsr 14504 | . . . . . . . . . 10 ⊢ mPwSer Fn (V × V) | |
| 18 | fnrel 5381 | . . . . . . . . . 10 ⊢ ( mPwSer Fn (V × V) → Rel mPwSer ) | |
| 19 | 17, 18 | ax-mp 5 | . . . . . . . . 9 ⊢ Rel mPwSer |
| 20 | 16, 19, 7, 9 | relelbasov 12969 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 21 | 10, 20 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 22 | 21 | simpld 112 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
| 23 | fnovex 5990 | . . . . . 6 ⊢ (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0 ↑𝑚 𝐼) ∈ V) | |
| 24 | 14, 15, 22, 23 | mp3an12i 1354 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑𝑚 𝐼) ∈ V) |
| 25 | rabexg 4195 | . . . . 5 ⊢ ((ℕ0 ↑𝑚 𝐼) ∈ V → {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) | |
| 26 | 24, 25 | syl 14 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
| 27 | inidm 3386 | . . . 4 ⊢ ({𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 28 | 6, 11, 13, 26, 26, 27 | off 6184 | . . 3 ⊢ (𝜑 → (𝑋 ∘𝑓 (+g‘𝑅)𝑌):{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 29 | basfn 12965 | . . . . 5 ⊢ Base Fn V | |
| 30 | 1 | elexd 2787 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 31 | funfvex 5606 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 32 | 31 | funfni 5385 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 33 | 29, 30, 32 | sylancr 414 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 34 | 33, 26 | elmapd 6762 | . . 3 ⊢ (𝜑 → ((𝑋 ∘𝑓 (+g‘𝑅)𝑌) ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ (𝑋 ∘𝑓 (+g‘𝑅)𝑌):{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))) |
| 35 | 28, 34 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑋 ∘𝑓 (+g‘𝑅)𝑌) ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 36 | psraddcl.p | . . 3 ⊢ + = (+g‘𝑆) | |
| 37 | 7, 9, 3, 36, 10, 12 | psradd 14516 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑋 ∘𝑓 (+g‘𝑅)𝑌)) |
| 38 | 7, 2, 8, 9, 22, 1 | psrbasg 14511 | . 2 ⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 39 | 35, 37, 38 | 3eltr4d 2290 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {crab 2489 Vcvv 2773 × cxp 4681 ◡ccnv 4682 “ cima 4686 Rel wrel 4688 Fn wfn 5275 ⟶wf 5276 ‘cfv 5280 (class class class)co 5957 ∘𝑓 cof 6169 ↑𝑚 cmap 6748 Fincfn 6840 ℕcn 9056 ℕ0cn0 9315 Basecbs 12907 +gcplusg 12984 Mgmcmgm 13261 mPwSer cmps 14498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-tp 3646 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-of 6171 df-1st 6239 df-2nd 6240 df-map 6750 df-ixp 6799 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-n0 9316 df-z 9393 df-uz 9669 df-fz 10151 df-struct 12909 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-mulr 12998 df-sca 13000 df-vsca 13001 df-tset 13003 df-rest 13148 df-topn 13149 df-topgen 13167 df-pt 13168 df-mgm 13263 df-psr 14500 |
| This theorem is referenced by: mplsubgfilemcl 14536 |
| Copyright terms: Public domain | W3C validator |