| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psraddcl | GIF version | ||
| Description: Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.) |
| Ref | Expression |
|---|---|
| psraddcl.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psraddcl.b | ⊢ 𝐵 = (Base‘𝑆) |
| psraddcl.p | ⊢ + = (+g‘𝑆) |
| psraddcl.r | ⊢ (𝜑 → 𝑅 ∈ Mgm) |
| psraddcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| psraddcl.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| psraddcl | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psraddcl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Mgm) | |
| 2 | eqid 2196 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2196 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | 2, 3 | mgmcl 13061 | . . . . . 6 ⊢ ((𝑅 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 5 | 4 | 3expb 1206 | . . . . 5 ⊢ ((𝑅 ∈ Mgm ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 6 | 1, 5 | sylan 283 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 7 | psraddcl.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 8 | eqid 2196 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 9 | psraddcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
| 10 | psraddcl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | 7, 2, 8, 9, 10 | psrelbas 14304 | . . . 4 ⊢ (𝜑 → 𝑋:{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 12 | psraddcl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 13 | 7, 2, 8, 9, 12 | psrelbas 14304 | . . . 4 ⊢ (𝜑 → 𝑌:{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 14 | fnmap 6723 | . . . . . 6 ⊢ ↑𝑚 Fn (V × V) | |
| 15 | nn0ex 9272 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 16 | reldmpsr 14295 | . . . . . . . . 9 ⊢ Rel dom mPwSer | |
| 17 | fnpsr 14297 | . . . . . . . . . 10 ⊢ mPwSer Fn (V × V) | |
| 18 | fnrel 5357 | . . . . . . . . . 10 ⊢ ( mPwSer Fn (V × V) → Rel mPwSer ) | |
| 19 | 17, 18 | ax-mp 5 | . . . . . . . . 9 ⊢ Rel mPwSer |
| 20 | 16, 19, 7, 9 | relelbasov 12765 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 21 | 10, 20 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 22 | 21 | simpld 112 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
| 23 | fnovex 5958 | . . . . . 6 ⊢ (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0 ↑𝑚 𝐼) ∈ V) | |
| 24 | 14, 15, 22, 23 | mp3an12i 1352 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑𝑚 𝐼) ∈ V) |
| 25 | rabexg 4177 | . . . . 5 ⊢ ((ℕ0 ↑𝑚 𝐼) ∈ V → {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) | |
| 26 | 24, 25 | syl 14 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
| 27 | inidm 3373 | . . . 4 ⊢ ({𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 28 | 6, 11, 13, 26, 26, 27 | off 6152 | . . 3 ⊢ (𝜑 → (𝑋 ∘𝑓 (+g‘𝑅)𝑌):{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 29 | basfn 12761 | . . . . 5 ⊢ Base Fn V | |
| 30 | 1 | elexd 2776 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 31 | funfvex 5578 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 32 | 31 | funfni 5361 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 33 | 29, 30, 32 | sylancr 414 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 34 | 33, 26 | elmapd 6730 | . . 3 ⊢ (𝜑 → ((𝑋 ∘𝑓 (+g‘𝑅)𝑌) ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ (𝑋 ∘𝑓 (+g‘𝑅)𝑌):{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))) |
| 35 | 28, 34 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑋 ∘𝑓 (+g‘𝑅)𝑌) ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 36 | psraddcl.p | . . 3 ⊢ + = (+g‘𝑆) | |
| 37 | 7, 9, 3, 36, 10, 12 | psradd 14307 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑋 ∘𝑓 (+g‘𝑅)𝑌)) |
| 38 | 7, 2, 8, 9, 22, 1 | psrbasg 14303 | . 2 ⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 39 | 35, 37, 38 | 3eltr4d 2280 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {crab 2479 Vcvv 2763 × cxp 4662 ◡ccnv 4663 “ cima 4667 Rel wrel 4669 Fn wfn 5254 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 ∘𝑓 cof 6137 ↑𝑚 cmap 6716 Fincfn 6808 ℕcn 9007 ℕ0cn0 9266 Basecbs 12703 +gcplusg 12780 Mgmcmgm 13056 mPwSer cmps 14293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-map 6718 df-ixp 6767 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-struct 12705 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-tset 12799 df-rest 12943 df-topn 12944 df-topgen 12962 df-pt 12963 df-mgm 13058 df-psr 14294 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |