ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddf GIF version

Theorem xaddf 9844
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xaddf +𝑒 :(ℝ* Γ— ℝ*)βŸΆβ„*

Proof of Theorem xaddf
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 8004 . . . . . . 7 0 ∈ ℝ*
21a1i 9 . . . . . 6 ((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) β†’ 0 ∈ ℝ*)
3 pnfxr 8010 . . . . . . 7 +∞ ∈ ℝ*
43a1i 9 . . . . . 6 ((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) β†’ +∞ ∈ ℝ*)
5 xrmnfdc 9843 . . . . . . 7 (𝑦 ∈ ℝ* β†’ DECID 𝑦 = -∞)
65adantl 277 . . . . . 6 ((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) β†’ DECID 𝑦 = -∞)
72, 4, 6ifcldcd 3571 . . . . 5 ((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) β†’ if(𝑦 = -∞, 0, +∞) ∈ ℝ*)
87adantr 276 . . . 4 (((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ π‘₯ = +∞) β†’ if(𝑦 = -∞, 0, +∞) ∈ ℝ*)
91a1i 9 . . . . . 6 ((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ π‘₯ = -∞) β†’ 0 ∈ ℝ*)
10 mnfxr 8014 . . . . . . 7 -∞ ∈ ℝ*
1110a1i 9 . . . . . 6 ((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ π‘₯ = -∞) β†’ -∞ ∈ ℝ*)
12 xrpnfdc 9842 . . . . . . 7 (𝑦 ∈ ℝ* β†’ DECID 𝑦 = +∞)
1312ad3antlr 493 . . . . . 6 ((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ π‘₯ = -∞) β†’ DECID 𝑦 = +∞)
149, 11, 13ifcldcd 3571 . . . . 5 ((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ π‘₯ = -∞) β†’ if(𝑦 = +∞, 0, -∞) ∈ ℝ*)
153a1i 9 . . . . . 6 (((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ 𝑦 = +∞) β†’ +∞ ∈ ℝ*)
1610a1i 9 . . . . . . 7 ((((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ Β¬ 𝑦 = +∞) ∧ 𝑦 = -∞) β†’ -∞ ∈ ℝ*)
17 simp-4r 542 . . . . . . . . . 10 ((((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ Β¬ 𝑦 = +∞) ∧ Β¬ 𝑦 = -∞) β†’ Β¬ π‘₯ = +∞)
18 simp-5l 543 . . . . . . . . . . 11 ((((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ Β¬ 𝑦 = +∞) ∧ Β¬ 𝑦 = -∞) β†’ π‘₯ ∈ ℝ*)
19 simpllr 534 . . . . . . . . . . . 12 ((((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ Β¬ 𝑦 = +∞) ∧ Β¬ 𝑦 = -∞) β†’ Β¬ π‘₯ = -∞)
2019neqned 2354 . . . . . . . . . . 11 ((((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ Β¬ 𝑦 = +∞) ∧ Β¬ 𝑦 = -∞) β†’ π‘₯ β‰  -∞)
21 xrnemnf 9777 . . . . . . . . . . . 12 ((π‘₯ ∈ ℝ* ∧ π‘₯ β‰  -∞) ↔ (π‘₯ ∈ ℝ ∨ π‘₯ = +∞))
2221biimpi 120 . . . . . . . . . . 11 ((π‘₯ ∈ ℝ* ∧ π‘₯ β‰  -∞) β†’ (π‘₯ ∈ ℝ ∨ π‘₯ = +∞))
2318, 20, 22syl2anc 411 . . . . . . . . . 10 ((((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ Β¬ 𝑦 = +∞) ∧ Β¬ 𝑦 = -∞) β†’ (π‘₯ ∈ ℝ ∨ π‘₯ = +∞))
2417, 23ecased 1349 . . . . . . . . 9 ((((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ Β¬ 𝑦 = +∞) ∧ Β¬ 𝑦 = -∞) β†’ π‘₯ ∈ ℝ)
25 simplr 528 . . . . . . . . . 10 ((((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ Β¬ 𝑦 = +∞) ∧ Β¬ 𝑦 = -∞) β†’ Β¬ 𝑦 = +∞)
26 simp-5r 544 . . . . . . . . . . 11 ((((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ Β¬ 𝑦 = +∞) ∧ Β¬ 𝑦 = -∞) β†’ 𝑦 ∈ ℝ*)
27 neqne 2355 . . . . . . . . . . . 12 (Β¬ 𝑦 = -∞ β†’ 𝑦 β‰  -∞)
2827adantl 277 . . . . . . . . . . 11 ((((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ Β¬ 𝑦 = +∞) ∧ Β¬ 𝑦 = -∞) β†’ 𝑦 β‰  -∞)
29 xrnemnf 9777 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ* ∧ 𝑦 β‰  -∞) ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞))
3029biimpi 120 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ 𝑦 β‰  -∞) β†’ (𝑦 ∈ ℝ ∨ 𝑦 = +∞))
3126, 28, 30syl2anc 411 . . . . . . . . . 10 ((((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ Β¬ 𝑦 = +∞) ∧ Β¬ 𝑦 = -∞) β†’ (𝑦 ∈ ℝ ∨ 𝑦 = +∞))
3225, 31ecased 1349 . . . . . . . . 9 ((((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ Β¬ 𝑦 = +∞) ∧ Β¬ 𝑦 = -∞) β†’ 𝑦 ∈ ℝ)
3324, 32readdcld 7987 . . . . . . . 8 ((((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ Β¬ 𝑦 = +∞) ∧ Β¬ 𝑦 = -∞) β†’ (π‘₯ + 𝑦) ∈ ℝ)
3433rexrd 8007 . . . . . . 7 ((((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ Β¬ 𝑦 = +∞) ∧ Β¬ 𝑦 = -∞) β†’ (π‘₯ + 𝑦) ∈ ℝ*)
356ad3antrrr 492 . . . . . . 7 (((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ Β¬ 𝑦 = +∞) β†’ DECID 𝑦 = -∞)
3616, 34, 35ifcldadc 3564 . . . . . 6 (((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) ∧ Β¬ 𝑦 = +∞) β†’ if(𝑦 = -∞, -∞, (π‘₯ + 𝑦)) ∈ ℝ*)
3712ad3antlr 493 . . . . . 6 ((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) β†’ DECID 𝑦 = +∞)
3815, 36, 37ifcldadc 3564 . . . . 5 ((((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) ∧ Β¬ π‘₯ = -∞) β†’ if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (π‘₯ + 𝑦))) ∈ ℝ*)
39 xrmnfdc 9843 . . . . . 6 (π‘₯ ∈ ℝ* β†’ DECID π‘₯ = -∞)
4039ad2antrr 488 . . . . 5 (((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) β†’ DECID π‘₯ = -∞)
4114, 38, 40ifcldadc 3564 . . . 4 (((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) ∧ Β¬ π‘₯ = +∞) β†’ if(π‘₯ = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (π‘₯ + 𝑦)))) ∈ ℝ*)
42 xrpnfdc 9842 . . . . 5 (π‘₯ ∈ ℝ* β†’ DECID π‘₯ = +∞)
4342adantr 276 . . . 4 ((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) β†’ DECID π‘₯ = +∞)
448, 41, 43ifcldadc 3564 . . 3 ((π‘₯ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) β†’ if(π‘₯ = +∞, if(𝑦 = -∞, 0, +∞), if(π‘₯ = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (π‘₯ + 𝑦))))) ∈ ℝ*)
4544rgen2a 2531 . 2 βˆ€π‘₯ ∈ ℝ* βˆ€π‘¦ ∈ ℝ* if(π‘₯ = +∞, if(𝑦 = -∞, 0, +∞), if(π‘₯ = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (π‘₯ + 𝑦))))) ∈ ℝ*
46 df-xadd 9773 . . 3 +𝑒 = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(π‘₯ = +∞, if(𝑦 = -∞, 0, +∞), if(π‘₯ = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (π‘₯ + 𝑦))))))
4746fmpo 6202 . 2 (βˆ€π‘₯ ∈ ℝ* βˆ€π‘¦ ∈ ℝ* if(π‘₯ = +∞, if(𝑦 = -∞, 0, +∞), if(π‘₯ = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (π‘₯ + 𝑦))))) ∈ ℝ* ↔ +𝑒 :(ℝ* Γ— ℝ*)βŸΆβ„*)
4845, 47mpbi 145 1 +𝑒 :(ℝ* Γ— ℝ*)βŸΆβ„*
Colors of variables: wff set class
Syntax hints:  Β¬ wn 3   ∧ wa 104   ∨ wo 708  DECID wdc 834   = wceq 1353   ∈ wcel 2148   β‰  wne 2347  βˆ€wral 2455  ifcif 3535   Γ— cxp 4625  βŸΆwf 5213  (class class class)co 5875  β„cr 7810  0cc0 7811   + caddc 7814  +∞cpnf 7989  -∞cmnf 7990  β„*cxr 7991   +𝑒 cxad 9770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908  ax-rnegex 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-pnf 7994  df-mnf 7995  df-xr 7996  df-xadd 9773
This theorem is referenced by:  xaddcl  9860
  Copyright terms: Public domain W3C validator