Step | Hyp | Ref
| Expression |
1 | | 0xr 7945 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
2 | 1 | a1i 9 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → 0 ∈ ℝ*) |
3 | | pnfxr 7951 |
. . . . . . 7
⊢ +∞
∈ ℝ* |
4 | 3 | a1i 9 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → +∞ ∈
ℝ*) |
5 | | xrmnfdc 9779 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ*
→ DECID 𝑦 = -∞) |
6 | 5 | adantl 275 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → DECID 𝑦 = -∞) |
7 | 2, 4, 6 | ifcldcd 3555 |
. . . . 5
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → if(𝑦 = -∞, 0, +∞) ∈
ℝ*) |
8 | 7 | adantr 274 |
. . . 4
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑥 = +∞) → if(𝑦 = -∞, 0, +∞) ∈
ℝ*) |
9 | 1 | a1i 9 |
. . . . . 6
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → 0 ∈
ℝ*) |
10 | | mnfxr 7955 |
. . . . . . 7
⊢ -∞
∈ ℝ* |
11 | 10 | a1i 9 |
. . . . . 6
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → -∞ ∈
ℝ*) |
12 | | xrpnfdc 9778 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ*
→ DECID 𝑦 = +∞) |
13 | 12 | ad3antlr 485 |
. . . . . 6
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → DECID
𝑦 =
+∞) |
14 | 9, 11, 13 | ifcldcd 3555 |
. . . . 5
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → if(𝑦 = +∞, 0, -∞) ∈
ℝ*) |
15 | 3 | a1i 9 |
. . . . . 6
⊢
(((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ 𝑦 = +∞) → +∞ ∈
ℝ*) |
16 | 10 | a1i 9 |
. . . . . . 7
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ 𝑦 = -∞) → -∞ ∈
ℝ*) |
17 | | simp-4r 532 |
. . . . . . . . . 10
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → ¬ 𝑥 = +∞) |
18 | | simp-5l 533 |
. . . . . . . . . . 11
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑥 ∈ ℝ*) |
19 | | simpllr 524 |
. . . . . . . . . . . 12
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → ¬ 𝑥 = -∞) |
20 | 19 | neqned 2343 |
. . . . . . . . . . 11
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑥 ≠ -∞) |
21 | | xrnemnf 9713 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ*
∧ 𝑥 ≠ -∞)
↔ (𝑥 ∈ ℝ
∨ 𝑥 =
+∞)) |
22 | 21 | biimpi 119 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ*
∧ 𝑥 ≠ -∞)
→ (𝑥 ∈ ℝ
∨ 𝑥 =
+∞)) |
23 | 18, 20, 22 | syl2anc 409 |
. . . . . . . . . 10
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 ∈ ℝ ∨ 𝑥 = +∞)) |
24 | 17, 23 | ecased 1339 |
. . . . . . . . 9
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑥 ∈ ℝ) |
25 | | simplr 520 |
. . . . . . . . . 10
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → ¬ 𝑦 = +∞) |
26 | | simp-5r 534 |
. . . . . . . . . . 11
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑦 ∈ ℝ*) |
27 | | neqne 2344 |
. . . . . . . . . . . 12
⊢ (¬
𝑦 = -∞ → 𝑦 ≠ -∞) |
28 | 27 | adantl 275 |
. . . . . . . . . . 11
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑦 ≠ -∞) |
29 | | xrnemnf 9713 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℝ*
∧ 𝑦 ≠ -∞)
↔ (𝑦 ∈ ℝ
∨ 𝑦 =
+∞)) |
30 | 29 | biimpi 119 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℝ*
∧ 𝑦 ≠ -∞)
→ (𝑦 ∈ ℝ
∨ 𝑦 =
+∞)) |
31 | 26, 28, 30 | syl2anc 409 |
. . . . . . . . . 10
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑦 ∈ ℝ ∨ 𝑦 = +∞)) |
32 | 25, 31 | ecased 1339 |
. . . . . . . . 9
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑦 ∈ ℝ) |
33 | 24, 32 | readdcld 7928 |
. . . . . . . 8
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 + 𝑦) ∈ ℝ) |
34 | 33 | rexrd 7948 |
. . . . . . 7
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 + 𝑦) ∈
ℝ*) |
35 | 6 | ad3antrrr 484 |
. . . . . . 7
⊢
(((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) → DECID
𝑦 =
-∞) |
36 | 16, 34, 35 | ifcldadc 3549 |
. . . . . 6
⊢
(((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) → if(𝑦 = -∞, -∞, (𝑥 + 𝑦)) ∈
ℝ*) |
37 | 12 | ad3antlr 485 |
. . . . . 6
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) → DECID
𝑦 =
+∞) |
38 | 15, 36, 37 | ifcldadc 3549 |
. . . . 5
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈
ℝ*) |
39 | | xrmnfdc 9779 |
. . . . . 6
⊢ (𝑥 ∈ ℝ*
→ DECID 𝑥 = -∞) |
40 | 39 | ad2antrr 480 |
. . . . 5
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) → DECID
𝑥 =
-∞) |
41 | 14, 38, 40 | ifcldadc 3549 |
. . . 4
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) → if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))) ∈
ℝ*) |
42 | | xrpnfdc 9778 |
. . . . 5
⊢ (𝑥 ∈ ℝ*
→ DECID 𝑥 = +∞) |
43 | 42 | adantr 274 |
. . . 4
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → DECID 𝑥 = +∞) |
44 | 8, 41, 43 | ifcldadc 3549 |
. . 3
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦))))) ∈
ℝ*) |
45 | 44 | rgen2a 2520 |
. 2
⊢
∀𝑥 ∈
ℝ* ∀𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞),
if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦))))) ∈
ℝ* |
46 | | df-xadd 9709 |
. . 3
⊢
+𝑒 = (𝑥
∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞),
if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦)))))) |
47 | 46 | fmpo 6169 |
. 2
⊢
(∀𝑥 ∈
ℝ* ∀𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞),
if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦))))) ∈ ℝ* ↔
+𝑒 :(ℝ* ×
ℝ*)⟶ℝ*) |
48 | 45, 47 | mpbi 144 |
1
⊢
+𝑒 :(ℝ* ×
ℝ*)⟶ℝ* |