ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddf GIF version

Theorem xaddf 9780
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xaddf +𝑒 :(ℝ* × ℝ*)⟶ℝ*

Proof of Theorem xaddf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 7945 . . . . . . 7 0 ∈ ℝ*
21a1i 9 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 0 ∈ ℝ*)
3 pnfxr 7951 . . . . . . 7 +∞ ∈ ℝ*
43a1i 9 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → +∞ ∈ ℝ*)
5 xrmnfdc 9779 . . . . . . 7 (𝑦 ∈ ℝ*DECID 𝑦 = -∞)
65adantl 275 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → DECID 𝑦 = -∞)
72, 4, 6ifcldcd 3555 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if(𝑦 = -∞, 0, +∞) ∈ ℝ*)
87adantr 274 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = +∞) → if(𝑦 = -∞, 0, +∞) ∈ ℝ*)
91a1i 9 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → 0 ∈ ℝ*)
10 mnfxr 7955 . . . . . . 7 -∞ ∈ ℝ*
1110a1i 9 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → -∞ ∈ ℝ*)
12 xrpnfdc 9778 . . . . . . 7 (𝑦 ∈ ℝ*DECID 𝑦 = +∞)
1312ad3antlr 485 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → DECID 𝑦 = +∞)
149, 11, 13ifcldcd 3555 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → if(𝑦 = +∞, 0, -∞) ∈ ℝ*)
153a1i 9 . . . . . 6 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ 𝑦 = +∞) → +∞ ∈ ℝ*)
1610a1i 9 . . . . . . 7 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ 𝑦 = -∞) → -∞ ∈ ℝ*)
17 simp-4r 532 . . . . . . . . . 10 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → ¬ 𝑥 = +∞)
18 simp-5l 533 . . . . . . . . . . 11 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑥 ∈ ℝ*)
19 simpllr 524 . . . . . . . . . . . 12 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → ¬ 𝑥 = -∞)
2019neqned 2343 . . . . . . . . . . 11 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑥 ≠ -∞)
21 xrnemnf 9713 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝑥 ≠ -∞) ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞))
2221biimpi 119 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝑥 ≠ -∞) → (𝑥 ∈ ℝ ∨ 𝑥 = +∞))
2318, 20, 22syl2anc 409 . . . . . . . . . 10 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 ∈ ℝ ∨ 𝑥 = +∞))
2417, 23ecased 1339 . . . . . . . . 9 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑥 ∈ ℝ)
25 simplr 520 . . . . . . . . . 10 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → ¬ 𝑦 = +∞)
26 simp-5r 534 . . . . . . . . . . 11 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑦 ∈ ℝ*)
27 neqne 2344 . . . . . . . . . . . 12 𝑦 = -∞ → 𝑦 ≠ -∞)
2827adantl 275 . . . . . . . . . . 11 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑦 ≠ -∞)
29 xrnemnf 9713 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ*𝑦 ≠ -∞) ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞))
3029biimpi 119 . . . . . . . . . . 11 ((𝑦 ∈ ℝ*𝑦 ≠ -∞) → (𝑦 ∈ ℝ ∨ 𝑦 = +∞))
3126, 28, 30syl2anc 409 . . . . . . . . . 10 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑦 ∈ ℝ ∨ 𝑦 = +∞))
3225, 31ecased 1339 . . . . . . . . 9 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑦 ∈ ℝ)
3324, 32readdcld 7928 . . . . . . . 8 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 + 𝑦) ∈ ℝ)
3433rexrd 7948 . . . . . . 7 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 + 𝑦) ∈ ℝ*)
356ad3antrrr 484 . . . . . . 7 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) → DECID 𝑦 = -∞)
3616, 34, 35ifcldadc 3549 . . . . . 6 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) → if(𝑦 = -∞, -∞, (𝑥 + 𝑦)) ∈ ℝ*)
3712ad3antlr 485 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) → DECID 𝑦 = +∞)
3815, 36, 37ifcldadc 3549 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈ ℝ*)
39 xrmnfdc 9779 . . . . . 6 (𝑥 ∈ ℝ*DECID 𝑥 = -∞)
4039ad2antrr 480 . . . . 5 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) → DECID 𝑥 = -∞)
4114, 38, 40ifcldadc 3549 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) → if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))) ∈ ℝ*)
42 xrpnfdc 9778 . . . . 5 (𝑥 ∈ ℝ*DECID 𝑥 = +∞)
4342adantr 274 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → DECID 𝑥 = +∞)
448, 41, 43ifcldadc 3549 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ*)
4544rgen2a 2520 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ*
46 df-xadd 9709 . . 3 +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))))
4746fmpo 6169 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ* ↔ +𝑒 :(ℝ* × ℝ*)⟶ℝ*)
4845, 47mpbi 144 1 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wo 698  DECID wdc 824   = wceq 1343  wcel 2136  wne 2336  wral 2444  ifcif 3520   × cxp 4602  wf 5184  (class class class)co 5842  cr 7752  0cc0 7753   + caddc 7756  +∞cpnf 7930  -∞cmnf 7931  *cxr 7932   +𝑒 cxad 9706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-rnegex 7862
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-xadd 9709
This theorem is referenced by:  xaddcl  9796
  Copyright terms: Public domain W3C validator