ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddf GIF version

Theorem xaddf 9468
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xaddf +𝑒 :(ℝ* × ℝ*)⟶ℝ*

Proof of Theorem xaddf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 7684 . . . . . . 7 0 ∈ ℝ*
21a1i 9 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 0 ∈ ℝ*)
3 pnfxr 7690 . . . . . . 7 +∞ ∈ ℝ*
43a1i 9 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → +∞ ∈ ℝ*)
5 xrmnfdc 9467 . . . . . . 7 (𝑦 ∈ ℝ*DECID 𝑦 = -∞)
65adantl 273 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → DECID 𝑦 = -∞)
72, 4, 6ifcldcd 3454 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if(𝑦 = -∞, 0, +∞) ∈ ℝ*)
87adantr 272 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = +∞) → if(𝑦 = -∞, 0, +∞) ∈ ℝ*)
91a1i 9 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → 0 ∈ ℝ*)
10 mnfxr 7694 . . . . . . 7 -∞ ∈ ℝ*
1110a1i 9 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → -∞ ∈ ℝ*)
12 xrpnfdc 9466 . . . . . . 7 (𝑦 ∈ ℝ*DECID 𝑦 = +∞)
1312ad3antlr 480 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → DECID 𝑦 = +∞)
149, 11, 13ifcldcd 3454 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → if(𝑦 = +∞, 0, -∞) ∈ ℝ*)
153a1i 9 . . . . . 6 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ 𝑦 = +∞) → +∞ ∈ ℝ*)
1610a1i 9 . . . . . . 7 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ 𝑦 = -∞) → -∞ ∈ ℝ*)
17 simp-4r 512 . . . . . . . . . 10 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → ¬ 𝑥 = +∞)
18 simp-5l 513 . . . . . . . . . . 11 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑥 ∈ ℝ*)
19 simpllr 504 . . . . . . . . . . . 12 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → ¬ 𝑥 = -∞)
2019neqned 2274 . . . . . . . . . . 11 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑥 ≠ -∞)
21 xrnemnf 9405 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝑥 ≠ -∞) ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞))
2221biimpi 119 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝑥 ≠ -∞) → (𝑥 ∈ ℝ ∨ 𝑥 = +∞))
2318, 20, 22syl2anc 406 . . . . . . . . . 10 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 ∈ ℝ ∨ 𝑥 = +∞))
2417, 23ecased 1295 . . . . . . . . 9 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑥 ∈ ℝ)
25 simplr 500 . . . . . . . . . 10 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → ¬ 𝑦 = +∞)
26 simp-5r 514 . . . . . . . . . . 11 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑦 ∈ ℝ*)
27 neqne 2275 . . . . . . . . . . . 12 𝑦 = -∞ → 𝑦 ≠ -∞)
2827adantl 273 . . . . . . . . . . 11 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑦 ≠ -∞)
29 xrnemnf 9405 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ*𝑦 ≠ -∞) ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞))
3029biimpi 119 . . . . . . . . . . 11 ((𝑦 ∈ ℝ*𝑦 ≠ -∞) → (𝑦 ∈ ℝ ∨ 𝑦 = +∞))
3126, 28, 30syl2anc 406 . . . . . . . . . 10 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑦 ∈ ℝ ∨ 𝑦 = +∞))
3225, 31ecased 1295 . . . . . . . . 9 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑦 ∈ ℝ)
3324, 32readdcld 7667 . . . . . . . 8 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 + 𝑦) ∈ ℝ)
3433rexrd 7687 . . . . . . 7 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 + 𝑦) ∈ ℝ*)
356ad3antrrr 479 . . . . . . 7 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) → DECID 𝑦 = -∞)
3616, 34, 35ifcldadc 3448 . . . . . 6 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) → if(𝑦 = -∞, -∞, (𝑥 + 𝑦)) ∈ ℝ*)
3712ad3antlr 480 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) → DECID 𝑦 = +∞)
3815, 36, 37ifcldadc 3448 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈ ℝ*)
39 xrmnfdc 9467 . . . . . 6 (𝑥 ∈ ℝ*DECID 𝑥 = -∞)
4039ad2antrr 475 . . . . 5 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) → DECID 𝑥 = -∞)
4114, 38, 40ifcldadc 3448 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) → if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))) ∈ ℝ*)
42 xrpnfdc 9466 . . . . 5 (𝑥 ∈ ℝ*DECID 𝑥 = +∞)
4342adantr 272 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → DECID 𝑥 = +∞)
448, 41, 43ifcldadc 3448 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ*)
4544rgen2a 2445 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ*
46 df-xadd 9401 . . 3 +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))))
4746fmpo 6029 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ* ↔ +𝑒 :(ℝ* × ℝ*)⟶ℝ*)
4845, 47mpbi 144 1 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wo 670  DECID wdc 786   = wceq 1299  wcel 1448  wne 2267  wral 2375  ifcif 3421   × cxp 4475  wf 5055  (class class class)co 5706  cr 7499  0cc0 7500   + caddc 7503  +∞cpnf 7669  -∞cmnf 7670  *cxr 7671   +𝑒 cxad 9398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1re 7589  ax-addrcl 7592  ax-rnegex 7604
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-pnf 7674  df-mnf 7675  df-xr 7676  df-xadd 9401
This theorem is referenced by:  xaddcl  9484
  Copyright terms: Public domain W3C validator