Step | Hyp | Ref
| Expression |
1 | | 0xr 8004 |
. . . . . . 7
β’ 0 β
β* |
2 | 1 | a1i 9 |
. . . . . 6
β’ ((π₯ β β*
β§ π¦ β
β*) β 0 β β*) |
3 | | pnfxr 8010 |
. . . . . . 7
β’ +β
β β* |
4 | 3 | a1i 9 |
. . . . . 6
β’ ((π₯ β β*
β§ π¦ β
β*) β +β β
β*) |
5 | | xrmnfdc 9843 |
. . . . . . 7
β’ (π¦ β β*
β DECID π¦ = -β) |
6 | 5 | adantl 277 |
. . . . . 6
β’ ((π₯ β β*
β§ π¦ β
β*) β DECID π¦ = -β) |
7 | 2, 4, 6 | ifcldcd 3571 |
. . . . 5
β’ ((π₯ β β*
β§ π¦ β
β*) β if(π¦ = -β, 0, +β) β
β*) |
8 | 7 | adantr 276 |
. . . 4
β’ (((π₯ β β*
β§ π¦ β
β*) β§ π₯ = +β) β if(π¦ = -β, 0, +β) β
β*) |
9 | 1 | a1i 9 |
. . . . . 6
β’ ((((π₯ β β*
β§ π¦ β
β*) β§ Β¬ π₯ = +β) β§ π₯ = -β) β 0 β
β*) |
10 | | mnfxr 8014 |
. . . . . . 7
β’ -β
β β* |
11 | 10 | a1i 9 |
. . . . . 6
β’ ((((π₯ β β*
β§ π¦ β
β*) β§ Β¬ π₯ = +β) β§ π₯ = -β) β -β β
β*) |
12 | | xrpnfdc 9842 |
. . . . . . 7
β’ (π¦ β β*
β DECID π¦ = +β) |
13 | 12 | ad3antlr 493 |
. . . . . 6
β’ ((((π₯ β β*
β§ π¦ β
β*) β§ Β¬ π₯ = +β) β§ π₯ = -β) β DECID
π¦ =
+β) |
14 | 9, 11, 13 | ifcldcd 3571 |
. . . . 5
β’ ((((π₯ β β*
β§ π¦ β
β*) β§ Β¬ π₯ = +β) β§ π₯ = -β) β if(π¦ = +β, 0, -β) β
β*) |
15 | 3 | a1i 9 |
. . . . . 6
β’
(((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ π¦ = +β) β +β β
β*) |
16 | 10 | a1i 9 |
. . . . . . 7
β’
((((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ Β¬ π¦ = +β) β§ π¦ = -β) β -β β
β*) |
17 | | simp-4r 542 |
. . . . . . . . . 10
β’
((((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ Β¬ π¦ = +β) β§ Β¬ π¦ = -β) β Β¬ π₯ = +β) |
18 | | simp-5l 543 |
. . . . . . . . . . 11
β’
((((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ Β¬ π¦ = +β) β§ Β¬ π¦ = -β) β π₯ β β*) |
19 | | simpllr 534 |
. . . . . . . . . . . 12
β’
((((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ Β¬ π¦ = +β) β§ Β¬ π¦ = -β) β Β¬ π₯ = -β) |
20 | 19 | neqned 2354 |
. . . . . . . . . . 11
β’
((((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ Β¬ π¦ = +β) β§ Β¬ π¦ = -β) β π₯ β -β) |
21 | | xrnemnf 9777 |
. . . . . . . . . . . 12
β’ ((π₯ β β*
β§ π₯ β -β)
β (π₯ β β
β¨ π₯ =
+β)) |
22 | 21 | biimpi 120 |
. . . . . . . . . . 11
β’ ((π₯ β β*
β§ π₯ β -β)
β (π₯ β β
β¨ π₯ =
+β)) |
23 | 18, 20, 22 | syl2anc 411 |
. . . . . . . . . 10
β’
((((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ Β¬ π¦ = +β) β§ Β¬ π¦ = -β) β (π₯ β β β¨ π₯ = +β)) |
24 | 17, 23 | ecased 1349 |
. . . . . . . . 9
β’
((((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ Β¬ π¦ = +β) β§ Β¬ π¦ = -β) β π₯ β β) |
25 | | simplr 528 |
. . . . . . . . . 10
β’
((((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ Β¬ π¦ = +β) β§ Β¬ π¦ = -β) β Β¬ π¦ = +β) |
26 | | simp-5r 544 |
. . . . . . . . . . 11
β’
((((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ Β¬ π¦ = +β) β§ Β¬ π¦ = -β) β π¦ β β*) |
27 | | neqne 2355 |
. . . . . . . . . . . 12
β’ (Β¬
π¦ = -β β π¦ β -β) |
28 | 27 | adantl 277 |
. . . . . . . . . . 11
β’
((((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ Β¬ π¦ = +β) β§ Β¬ π¦ = -β) β π¦ β -β) |
29 | | xrnemnf 9777 |
. . . . . . . . . . . 12
β’ ((π¦ β β*
β§ π¦ β -β)
β (π¦ β β
β¨ π¦ =
+β)) |
30 | 29 | biimpi 120 |
. . . . . . . . . . 11
β’ ((π¦ β β*
β§ π¦ β -β)
β (π¦ β β
β¨ π¦ =
+β)) |
31 | 26, 28, 30 | syl2anc 411 |
. . . . . . . . . 10
β’
((((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ Β¬ π¦ = +β) β§ Β¬ π¦ = -β) β (π¦ β β β¨ π¦ = +β)) |
32 | 25, 31 | ecased 1349 |
. . . . . . . . 9
β’
((((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ Β¬ π¦ = +β) β§ Β¬ π¦ = -β) β π¦ β β) |
33 | 24, 32 | readdcld 7987 |
. . . . . . . 8
β’
((((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ Β¬ π¦ = +β) β§ Β¬ π¦ = -β) β (π₯ + π¦) β β) |
34 | 33 | rexrd 8007 |
. . . . . . 7
β’
((((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ Β¬ π¦ = +β) β§ Β¬ π¦ = -β) β (π₯ + π¦) β
β*) |
35 | 6 | ad3antrrr 492 |
. . . . . . 7
β’
(((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ Β¬ π¦ = +β) β DECID
π¦ =
-β) |
36 | 16, 34, 35 | ifcldadc 3564 |
. . . . . 6
β’
(((((π₯ β
β* β§ π¦
β β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β§ Β¬ π¦ = +β) β if(π¦ = -β, -β, (π₯ + π¦)) β
β*) |
37 | 12 | ad3antlr 493 |
. . . . . 6
β’ ((((π₯ β β*
β§ π¦ β
β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β DECID
π¦ =
+β) |
38 | 15, 36, 37 | ifcldadc 3564 |
. . . . 5
β’ ((((π₯ β β*
β§ π¦ β
β*) β§ Β¬ π₯ = +β) β§ Β¬ π₯ = -β) β if(π¦ = +β, +β, if(π¦ = -β, -β, (π₯ + π¦))) β
β*) |
39 | | xrmnfdc 9843 |
. . . . . 6
β’ (π₯ β β*
β DECID π₯ = -β) |
40 | 39 | ad2antrr 488 |
. . . . 5
β’ (((π₯ β β*
β§ π¦ β
β*) β§ Β¬ π₯ = +β) β DECID
π₯ =
-β) |
41 | 14, 38, 40 | ifcldadc 3564 |
. . . 4
β’ (((π₯ β β*
β§ π¦ β
β*) β§ Β¬ π₯ = +β) β if(π₯ = -β, if(π¦ = +β, 0, -β), if(π¦ = +β, +β, if(π¦ = -β, -β, (π₯ + π¦)))) β
β*) |
42 | | xrpnfdc 9842 |
. . . . 5
β’ (π₯ β β*
β DECID π₯ = +β) |
43 | 42 | adantr 276 |
. . . 4
β’ ((π₯ β β*
β§ π¦ β
β*) β DECID π₯ = +β) |
44 | 8, 41, 43 | ifcldadc 3564 |
. . 3
β’ ((π₯ β β*
β§ π¦ β
β*) β if(π₯ = +β, if(π¦ = -β, 0, +β), if(π₯ = -β, if(π¦ = +β, 0, -β),
if(π¦ = +β, +β,
if(π¦ = -β, -β,
(π₯ + π¦))))) β
β*) |
45 | 44 | rgen2a 2531 |
. 2
β’
βπ₯ β
β* βπ¦ β β* if(π₯ = +β, if(π¦ = -β, 0, +β),
if(π₯ = -β, if(π¦ = +β, 0, -β),
if(π¦ = +β, +β,
if(π¦ = -β, -β,
(π₯ + π¦))))) β
β* |
46 | | df-xadd 9773 |
. . 3
β’
+π = (π₯
β β*, π¦ β β* β¦ if(π₯ = +β, if(π¦ = -β, 0, +β),
if(π₯ = -β, if(π¦ = +β, 0, -β),
if(π¦ = +β, +β,
if(π¦ = -β, -β,
(π₯ + π¦)))))) |
47 | 46 | fmpo 6202 |
. 2
β’
(βπ₯ β
β* βπ¦ β β* if(π₯ = +β, if(π¦ = -β, 0, +β),
if(π₯ = -β, if(π¦ = +β, 0, -β),
if(π¦ = +β, +β,
if(π¦ = -β, -β,
(π₯ + π¦))))) β β* β
+π :(β* Γ
β*)βΆβ*) |
48 | 45, 47 | mpbi 145 |
1
β’
+π :(β* Γ
β*)βΆβ* |