| Step | Hyp | Ref
| Expression |
| 1 | | 0xr 8073 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
| 2 | 1 | a1i 9 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → 0 ∈ ℝ*) |
| 3 | | pnfxr 8079 |
. . . . . . 7
⊢ +∞
∈ ℝ* |
| 4 | 3 | a1i 9 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → +∞ ∈
ℝ*) |
| 5 | | xrmnfdc 9918 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ*
→ DECID 𝑦 = -∞) |
| 6 | 5 | adantl 277 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → DECID 𝑦 = -∞) |
| 7 | 2, 4, 6 | ifcldcd 3597 |
. . . . 5
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → if(𝑦 = -∞, 0, +∞) ∈
ℝ*) |
| 8 | 7 | adantr 276 |
. . . 4
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑥 = +∞) → if(𝑦 = -∞, 0, +∞) ∈
ℝ*) |
| 9 | 1 | a1i 9 |
. . . . . 6
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → 0 ∈
ℝ*) |
| 10 | | mnfxr 8083 |
. . . . . . 7
⊢ -∞
∈ ℝ* |
| 11 | 10 | a1i 9 |
. . . . . 6
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → -∞ ∈
ℝ*) |
| 12 | | xrpnfdc 9917 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ*
→ DECID 𝑦 = +∞) |
| 13 | 12 | ad3antlr 493 |
. . . . . 6
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → DECID
𝑦 =
+∞) |
| 14 | 9, 11, 13 | ifcldcd 3597 |
. . . . 5
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → if(𝑦 = +∞, 0, -∞) ∈
ℝ*) |
| 15 | 3 | a1i 9 |
. . . . . 6
⊢
(((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ 𝑦 = +∞) → +∞ ∈
ℝ*) |
| 16 | 10 | a1i 9 |
. . . . . . 7
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ 𝑦 = -∞) → -∞ ∈
ℝ*) |
| 17 | | simp-4r 542 |
. . . . . . . . . 10
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → ¬ 𝑥 = +∞) |
| 18 | | simp-5l 543 |
. . . . . . . . . . 11
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑥 ∈ ℝ*) |
| 19 | | simpllr 534 |
. . . . . . . . . . . 12
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → ¬ 𝑥 = -∞) |
| 20 | 19 | neqned 2374 |
. . . . . . . . . . 11
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑥 ≠ -∞) |
| 21 | | xrnemnf 9852 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ*
∧ 𝑥 ≠ -∞)
↔ (𝑥 ∈ ℝ
∨ 𝑥 =
+∞)) |
| 22 | 21 | biimpi 120 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ*
∧ 𝑥 ≠ -∞)
→ (𝑥 ∈ ℝ
∨ 𝑥 =
+∞)) |
| 23 | 18, 20, 22 | syl2anc 411 |
. . . . . . . . . 10
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 ∈ ℝ ∨ 𝑥 = +∞)) |
| 24 | 17, 23 | ecased 1360 |
. . . . . . . . 9
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑥 ∈ ℝ) |
| 25 | | simplr 528 |
. . . . . . . . . 10
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → ¬ 𝑦 = +∞) |
| 26 | | simp-5r 544 |
. . . . . . . . . . 11
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑦 ∈ ℝ*) |
| 27 | | neqne 2375 |
. . . . . . . . . . . 12
⊢ (¬
𝑦 = -∞ → 𝑦 ≠ -∞) |
| 28 | 27 | adantl 277 |
. . . . . . . . . . 11
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑦 ≠ -∞) |
| 29 | | xrnemnf 9852 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℝ*
∧ 𝑦 ≠ -∞)
↔ (𝑦 ∈ ℝ
∨ 𝑦 =
+∞)) |
| 30 | 29 | biimpi 120 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℝ*
∧ 𝑦 ≠ -∞)
→ (𝑦 ∈ ℝ
∨ 𝑦 =
+∞)) |
| 31 | 26, 28, 30 | syl2anc 411 |
. . . . . . . . . 10
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑦 ∈ ℝ ∨ 𝑦 = +∞)) |
| 32 | 25, 31 | ecased 1360 |
. . . . . . . . 9
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑦 ∈ ℝ) |
| 33 | 24, 32 | readdcld 8056 |
. . . . . . . 8
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 + 𝑦) ∈ ℝ) |
| 34 | 33 | rexrd 8076 |
. . . . . . 7
⊢
((((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 + 𝑦) ∈
ℝ*) |
| 35 | 6 | ad3antrrr 492 |
. . . . . . 7
⊢
(((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) → DECID
𝑦 =
-∞) |
| 36 | 16, 34, 35 | ifcldadc 3590 |
. . . . . 6
⊢
(((((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) → if(𝑦 = -∞, -∞, (𝑥 + 𝑦)) ∈
ℝ*) |
| 37 | 12 | ad3antlr 493 |
. . . . . 6
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) → DECID
𝑦 =
+∞) |
| 38 | 15, 36, 37 | ifcldadc 3590 |
. . . . 5
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈
ℝ*) |
| 39 | | xrmnfdc 9918 |
. . . . . 6
⊢ (𝑥 ∈ ℝ*
→ DECID 𝑥 = -∞) |
| 40 | 39 | ad2antrr 488 |
. . . . 5
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) → DECID
𝑥 =
-∞) |
| 41 | 14, 38, 40 | ifcldadc 3590 |
. . . 4
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ ¬ 𝑥 = +∞) → if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))) ∈
ℝ*) |
| 42 | | xrpnfdc 9917 |
. . . . 5
⊢ (𝑥 ∈ ℝ*
→ DECID 𝑥 = +∞) |
| 43 | 42 | adantr 276 |
. . . 4
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → DECID 𝑥 = +∞) |
| 44 | 8, 41, 43 | ifcldadc 3590 |
. . 3
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦))))) ∈
ℝ*) |
| 45 | 44 | rgen2a 2551 |
. 2
⊢
∀𝑥 ∈
ℝ* ∀𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞),
if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦))))) ∈
ℝ* |
| 46 | | df-xadd 9848 |
. . 3
⊢
+𝑒 = (𝑥
∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞),
if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦)))))) |
| 47 | 46 | fmpo 6259 |
. 2
⊢
(∀𝑥 ∈
ℝ* ∀𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞),
if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦))))) ∈ ℝ* ↔
+𝑒 :(ℝ* ×
ℝ*)⟶ℝ*) |
| 48 | 45, 47 | mpbi 145 |
1
⊢
+𝑒 :(ℝ* ×
ℝ*)⟶ℝ* |