ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddf GIF version

Theorem xaddf 9801
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xaddf +𝑒 :(ℝ* × ℝ*)⟶ℝ*

Proof of Theorem xaddf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 7966 . . . . . . 7 0 ∈ ℝ*
21a1i 9 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 0 ∈ ℝ*)
3 pnfxr 7972 . . . . . . 7 +∞ ∈ ℝ*
43a1i 9 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → +∞ ∈ ℝ*)
5 xrmnfdc 9800 . . . . . . 7 (𝑦 ∈ ℝ*DECID 𝑦 = -∞)
65adantl 275 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → DECID 𝑦 = -∞)
72, 4, 6ifcldcd 3561 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if(𝑦 = -∞, 0, +∞) ∈ ℝ*)
87adantr 274 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = +∞) → if(𝑦 = -∞, 0, +∞) ∈ ℝ*)
91a1i 9 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → 0 ∈ ℝ*)
10 mnfxr 7976 . . . . . . 7 -∞ ∈ ℝ*
1110a1i 9 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → -∞ ∈ ℝ*)
12 xrpnfdc 9799 . . . . . . 7 (𝑦 ∈ ℝ*DECID 𝑦 = +∞)
1312ad3antlr 490 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → DECID 𝑦 = +∞)
149, 11, 13ifcldcd 3561 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → if(𝑦 = +∞, 0, -∞) ∈ ℝ*)
153a1i 9 . . . . . 6 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ 𝑦 = +∞) → +∞ ∈ ℝ*)
1610a1i 9 . . . . . . 7 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ 𝑦 = -∞) → -∞ ∈ ℝ*)
17 simp-4r 537 . . . . . . . . . 10 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → ¬ 𝑥 = +∞)
18 simp-5l 538 . . . . . . . . . . 11 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑥 ∈ ℝ*)
19 simpllr 529 . . . . . . . . . . . 12 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → ¬ 𝑥 = -∞)
2019neqned 2347 . . . . . . . . . . 11 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑥 ≠ -∞)
21 xrnemnf 9734 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝑥 ≠ -∞) ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞))
2221biimpi 119 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝑥 ≠ -∞) → (𝑥 ∈ ℝ ∨ 𝑥 = +∞))
2318, 20, 22syl2anc 409 . . . . . . . . . 10 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 ∈ ℝ ∨ 𝑥 = +∞))
2417, 23ecased 1344 . . . . . . . . 9 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑥 ∈ ℝ)
25 simplr 525 . . . . . . . . . 10 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → ¬ 𝑦 = +∞)
26 simp-5r 539 . . . . . . . . . . 11 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑦 ∈ ℝ*)
27 neqne 2348 . . . . . . . . . . . 12 𝑦 = -∞ → 𝑦 ≠ -∞)
2827adantl 275 . . . . . . . . . . 11 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑦 ≠ -∞)
29 xrnemnf 9734 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ*𝑦 ≠ -∞) ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞))
3029biimpi 119 . . . . . . . . . . 11 ((𝑦 ∈ ℝ*𝑦 ≠ -∞) → (𝑦 ∈ ℝ ∨ 𝑦 = +∞))
3126, 28, 30syl2anc 409 . . . . . . . . . 10 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑦 ∈ ℝ ∨ 𝑦 = +∞))
3225, 31ecased 1344 . . . . . . . . 9 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → 𝑦 ∈ ℝ)
3324, 32readdcld 7949 . . . . . . . 8 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 + 𝑦) ∈ ℝ)
3433rexrd 7969 . . . . . . 7 ((((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 + 𝑦) ∈ ℝ*)
356ad3antrrr 489 . . . . . . 7 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) → DECID 𝑦 = -∞)
3616, 34, 35ifcldadc 3555 . . . . . 6 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) ∧ ¬ 𝑦 = +∞) → if(𝑦 = -∞, -∞, (𝑥 + 𝑦)) ∈ ℝ*)
3712ad3antlr 490 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) → DECID 𝑦 = +∞)
3815, 36, 37ifcldadc 3555 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈ ℝ*)
39 xrmnfdc 9800 . . . . . 6 (𝑥 ∈ ℝ*DECID 𝑥 = -∞)
4039ad2antrr 485 . . . . 5 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) → DECID 𝑥 = -∞)
4114, 38, 40ifcldadc 3555 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) → if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))) ∈ ℝ*)
42 xrpnfdc 9799 . . . . 5 (𝑥 ∈ ℝ*DECID 𝑥 = +∞)
4342adantr 274 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → DECID 𝑥 = +∞)
448, 41, 43ifcldadc 3555 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ*)
4544rgen2a 2524 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ*
46 df-xadd 9730 . . 3 +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))))
4746fmpo 6180 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ* ↔ +𝑒 :(ℝ* × ℝ*)⟶ℝ*)
4845, 47mpbi 144 1 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  wne 2340  wral 2448  ifcif 3526   × cxp 4609  wf 5194  (class class class)co 5853  cr 7773  0cc0 7774   + caddc 7777  +∞cpnf 7951  -∞cmnf 7952  *cxr 7953   +𝑒 cxad 9727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871  ax-rnegex 7883
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-xadd 9730
This theorem is referenced by:  xaddcl  9817
  Copyright terms: Public domain W3C validator