| Step | Hyp | Ref
| Expression |
| 1 | | dedekindeu.lss |
. . 3
⊢ (𝜑 → 𝐿 ⊆ ℝ) |
| 2 | | dedekindeu.uss |
. . 3
⊢ (𝜑 → 𝑈 ⊆ ℝ) |
| 3 | | dedekindeu.lm |
. . 3
⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) |
| 4 | | dedekindeu.um |
. . 3
⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) |
| 5 | | dedekindeu.lr |
. . 3
⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
| 6 | | dedekindeu.ur |
. . 3
⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
| 7 | | dedekindeu.disj |
. . 3
⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
| 8 | | dedekindeu.loc |
. . 3
⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | dedekindeulemlub 14856 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) |
| 10 | | simpr 110 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) → 𝑞 ∈ 𝐿) |
| 11 | 1 | ad3antrrr 492 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) → 𝐿 ⊆ ℝ) |
| 12 | 11, 10 | sseldd 3184 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) → 𝑞 ∈ ℝ) |
| 13 | | rsp 2544 |
. . . . . . . . . . 11
⊢
(∀𝑞 ∈
ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟) → (𝑞 ∈ ℝ → (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))) |
| 14 | 5, 13 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑞 ∈ ℝ → (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))) |
| 15 | 14 | ad3antrrr 492 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) → (𝑞 ∈ ℝ → (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))) |
| 16 | 12, 15 | mpd 13 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) → (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
| 17 | 10, 16 | mpbid 147 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) → ∃𝑟 ∈ 𝐿 𝑞 < 𝑟) |
| 18 | 12 | adantr 276 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑞 ∈ ℝ) |
| 19 | 11 | adantr 276 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝐿 ⊆ ℝ) |
| 20 | | simprl 529 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑟 ∈ 𝐿) |
| 21 | 19, 20 | sseldd 3184 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑟 ∈ ℝ) |
| 22 | | simp-4r 542 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑥 ∈ ℝ) |
| 23 | | simprr 531 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑞 < 𝑟) |
| 24 | | breq2 4037 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑟 → (𝑥 < 𝑦 ↔ 𝑥 < 𝑟)) |
| 25 | 24 | notbid 668 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑟 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < 𝑟)) |
| 26 | | simprl 529 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) → ∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦) |
| 27 | 26 | ad2antrr 488 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → ∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦) |
| 28 | 25, 27, 20 | rspcdva 2873 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → ¬ 𝑥 < 𝑟) |
| 29 | 21, 22, 28 | nltled 8147 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑟 ≤ 𝑥) |
| 30 | 18, 21, 22, 23, 29 | ltletrd 8450 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑞 < 𝑥) |
| 31 | 17, 30 | rexlimddv 2619 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) → 𝑞 < 𝑥) |
| 32 | 31 | ralrimiva 2570 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) → ∀𝑞 ∈ 𝐿 𝑞 < 𝑥) |
| 33 | | simpr 110 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) → 𝑟 ∈ 𝑈) |
| 34 | | simplll 533 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) → 𝜑) |
| 35 | 34, 2 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) → 𝑈 ⊆ ℝ) |
| 36 | 35, 33 | sseldd 3184 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) → 𝑟 ∈ ℝ) |
| 37 | | rsp 2544 |
. . . . . . . . . 10
⊢
(∀𝑟 ∈
ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟) → (𝑟 ∈ ℝ → (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))) |
| 38 | 6, 37 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (𝑟 ∈ ℝ → (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))) |
| 39 | 34, 36, 38 | sylc 62 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) → (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
| 40 | 33, 39 | mpbid 147 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) → ∃𝑞 ∈ 𝑈 𝑞 < 𝑟) |
| 41 | | simp-4r 542 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑥 ∈ ℝ) |
| 42 | 35 | adantr 276 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑈 ⊆ ℝ) |
| 43 | | simprl 529 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑞 ∈ 𝑈) |
| 44 | 42, 43 | sseldd 3184 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑞 ∈ ℝ) |
| 45 | 36 | adantr 276 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑟 ∈ ℝ) |
| 46 | 43 | adantr 276 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞 ∈ 𝑈) |
| 47 | 34 | ad2antrr 488 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝜑) |
| 48 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞 < 𝑥) |
| 49 | | breq1 4036 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑞 → (𝑦 < 𝑥 ↔ 𝑞 < 𝑥)) |
| 50 | | breq1 4036 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑞 → (𝑦 < 𝑧 ↔ 𝑞 < 𝑧)) |
| 51 | 50 | rexbidv 2498 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑞 → (∃𝑧 ∈ 𝐿 𝑦 < 𝑧 ↔ ∃𝑧 ∈ 𝐿 𝑞 < 𝑧)) |
| 52 | 49, 51 | imbi12d 234 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑞 → ((𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧) ↔ (𝑞 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑞 < 𝑧))) |
| 53 | | simprr 531 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) → ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧)) |
| 54 | 53 | ad3antrrr 492 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧)) |
| 55 | 44 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞 ∈ ℝ) |
| 56 | 52, 54, 55 | rspcdva 2873 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → (𝑞 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑞 < 𝑧)) |
| 57 | 48, 56 | mpd 13 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ∃𝑧 ∈ 𝐿 𝑞 < 𝑧) |
| 58 | | breq2 4037 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑟 → (𝑞 < 𝑧 ↔ 𝑞 < 𝑟)) |
| 59 | 58 | cbvrexv 2730 |
. . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
𝐿 𝑞 < 𝑧 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟) |
| 60 | 57, 59 | sylib 122 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ∃𝑟 ∈ 𝐿 𝑞 < 𝑟) |
| 61 | 47, 55, 14 | sylc 62 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
| 62 | 60, 61 | mpbird 167 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞 ∈ 𝐿) |
| 63 | | disj 3499 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∩ 𝑈) = ∅ ↔ ∀𝑞 ∈ 𝐿 ¬ 𝑞 ∈ 𝑈) |
| 64 | 7, 63 | sylib 122 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑞 ∈ 𝐿 ¬ 𝑞 ∈ 𝑈) |
| 65 | 64 | r19.21bi 2585 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐿) → ¬ 𝑞 ∈ 𝑈) |
| 66 | 47, 62, 65 | syl2anc 411 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ¬ 𝑞 ∈ 𝑈) |
| 67 | 46, 66 | pm2.65da 662 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → ¬ 𝑞 < 𝑥) |
| 68 | 41, 44, 67 | nltled 8147 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑥 ≤ 𝑞) |
| 69 | | simprr 531 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑞 < 𝑟) |
| 70 | 41, 44, 45, 68, 69 | lelttrd 8151 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧
(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑥 < 𝑟) |
| 71 | 40, 70 | rexlimddv 2619 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) → 𝑥 < 𝑟) |
| 72 | 71 | ralrimiva 2570 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) → ∀𝑟 ∈ 𝑈 𝑥 < 𝑟) |
| 73 | 32, 72 | jca 306 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) → (∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) |
| 74 | 73 | ex 115 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧)) → (∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟))) |
| 75 | 74 | reximdva 2599 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟))) |
| 76 | 9, 75 | mpd 13 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) |