Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemlu GIF version

Theorem dedekindicclemlu 12766
 Description: Lemma for dedekindicc 12769. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a (𝜑𝐴 ∈ ℝ)
dedekindicc.b (𝜑𝐵 ∈ ℝ)
dedekindicc.lss (𝜑𝐿 ⊆ (𝐴[,]𝐵))
dedekindicc.uss (𝜑𝑈 ⊆ (𝐴[,]𝐵))
dedekindicc.lm (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
dedekindicc.um (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
dedekindicc.lr (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindicc.ur (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindicc.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindicc.loc (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
dedekindicc.ab (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
dedekindicclemlu (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
Distinct variable groups:   𝐴,𝑞,𝑟,𝑥   𝐵,𝑞,𝑟,𝑥   𝐿,𝑞,𝑟,𝑥   𝑈,𝑞,𝑟   𝜑,𝑞,𝑟,𝑥
Allowed substitution hint:   𝑈(𝑥)

Proof of Theorem dedekindicclemlu
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dedekindicc.a . . 3 (𝜑𝐴 ∈ ℝ)
2 dedekindicc.b . . 3 (𝜑𝐵 ∈ ℝ)
3 dedekindicc.lss . . 3 (𝜑𝐿 ⊆ (𝐴[,]𝐵))
4 dedekindicc.uss . . 3 (𝜑𝑈 ⊆ (𝐴[,]𝐵))
5 dedekindicc.lm . . 3 (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
6 dedekindicc.um . . 3 (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
7 dedekindicc.lr . . 3 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
8 dedekindicc.ur . . 3 (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
9 dedekindicc.disj . . 3 (𝜑 → (𝐿𝑈) = ∅)
10 dedekindicc.loc . . 3 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
11 dedekindicc.ab . . 3 (𝜑𝐴 < 𝐵)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11dedekindicclemlub 12765 . 2 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
13 simpr 109 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → 𝑞𝐿)
143ad3antrrr 483 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → 𝐿 ⊆ (𝐴[,]𝐵))
1514, 13sseldd 3093 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → 𝑞 ∈ (𝐴[,]𝐵))
16 rsp 2478 . . . . . . . . . . 11 (∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟) → (𝑞 ∈ (𝐴[,]𝐵) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟)))
177, 16syl 14 . . . . . . . . . 10 (𝜑 → (𝑞 ∈ (𝐴[,]𝐵) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟)))
1817ad3antrrr 483 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → (𝑞 ∈ (𝐴[,]𝐵) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟)))
1915, 18mpd 13 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
2013, 19mpbid 146 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → ∃𝑟𝐿 𝑞 < 𝑟)
21 iccssre 9731 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
221, 2, 21syl2anc 408 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2322ad4antr 485 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → (𝐴[,]𝐵) ⊆ ℝ)
2415adantr 274 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑞 ∈ (𝐴[,]𝐵))
2523, 24sseldd 3093 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑞 ∈ ℝ)
263ad4antr 485 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝐿 ⊆ (𝐴[,]𝐵))
27 simprl 520 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑟𝐿)
2826, 27sseldd 3093 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑟 ∈ (𝐴[,]𝐵))
2923, 28sseldd 3093 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑟 ∈ ℝ)
30 simp-4r 531 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑥 ∈ (𝐴[,]𝐵))
3123, 30sseldd 3093 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑥 ∈ ℝ)
32 simprr 521 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑞 < 𝑟)
33 breq2 3928 . . . . . . . . . . 11 (𝑦 = 𝑟 → (𝑥 < 𝑦𝑥 < 𝑟))
3433notbid 656 . . . . . . . . . 10 (𝑦 = 𝑟 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < 𝑟))
35 simprl 520 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) → ∀𝑦𝐿 ¬ 𝑥 < 𝑦)
3635ad2antrr 479 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → ∀𝑦𝐿 ¬ 𝑥 < 𝑦)
3734, 36, 27rspcdva 2789 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → ¬ 𝑥 < 𝑟)
3829, 31, 37nltled 7876 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑟𝑥)
3925, 29, 31, 32, 38ltletrd 8178 . . . . . . 7 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑞 < 𝑥)
4020, 39rexlimddv 2552 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → 𝑞 < 𝑥)
4140ralrimiva 2503 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) → ∀𝑞𝐿 𝑞 < 𝑥)
42 simpr 109 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → 𝑟𝑈)
43 simplll 522 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → 𝜑)
444ad3antrrr 483 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → 𝑈 ⊆ (𝐴[,]𝐵))
4544, 42sseldd 3093 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → 𝑟 ∈ (𝐴[,]𝐵))
46 rsp 2478 . . . . . . . . . 10 (∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟) → (𝑟 ∈ (𝐴[,]𝐵) → (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟)))
478, 46syl 14 . . . . . . . . 9 (𝜑 → (𝑟 ∈ (𝐴[,]𝐵) → (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟)))
4843, 45, 47sylc 62 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
4942, 48mpbid 146 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → ∃𝑞𝑈 𝑞 < 𝑟)
5022ad4antr 485 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → (𝐴[,]𝐵) ⊆ ℝ)
51 simp-4r 531 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑥 ∈ (𝐴[,]𝐵))
5250, 51sseldd 3093 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑥 ∈ ℝ)
534ad4antr 485 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑈 ⊆ (𝐴[,]𝐵))
54 simprl 520 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑞𝑈)
5553, 54sseldd 3093 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑞 ∈ (𝐴[,]𝐵))
5650, 55sseldd 3093 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑞 ∈ ℝ)
5745adantr 274 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑟 ∈ (𝐴[,]𝐵))
5850, 57sseldd 3093 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑟 ∈ ℝ)
5954adantr 274 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞𝑈)
6043ad2antrr 479 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝜑)
61 simpr 109 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞 < 𝑥)
62 breq1 3927 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑞 → (𝑦 < 𝑥𝑞 < 𝑥))
63 breq1 3927 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑞 → (𝑦 < 𝑧𝑞 < 𝑧))
6463rexbidv 2436 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑞 → (∃𝑧𝐿 𝑦 < 𝑧 ↔ ∃𝑧𝐿 𝑞 < 𝑧))
6562, 64imbi12d 233 . . . . . . . . . . . . . . 15 (𝑦 = 𝑞 → ((𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧) ↔ (𝑞 < 𝑥 → ∃𝑧𝐿 𝑞 < 𝑧)))
66 simprr 521 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))
6766ad3antrrr 483 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))
6855adantr 274 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞 ∈ (𝐴[,]𝐵))
6965, 67, 68rspcdva 2789 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → (𝑞 < 𝑥 → ∃𝑧𝐿 𝑞 < 𝑧))
7061, 69mpd 13 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ∃𝑧𝐿 𝑞 < 𝑧)
71 breq2 3928 . . . . . . . . . . . . . 14 (𝑧 = 𝑟 → (𝑞 < 𝑧𝑞 < 𝑟))
7271cbvrexv 2653 . . . . . . . . . . . . 13 (∃𝑧𝐿 𝑞 < 𝑧 ↔ ∃𝑟𝐿 𝑞 < 𝑟)
7370, 72sylib 121 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ∃𝑟𝐿 𝑞 < 𝑟)
7460, 68, 17sylc 62 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
7573, 74mpbird 166 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞𝐿)
76 disj 3406 . . . . . . . . . . . . 13 ((𝐿𝑈) = ∅ ↔ ∀𝑞𝐿 ¬ 𝑞𝑈)
779, 76sylib 121 . . . . . . . . . . . 12 (𝜑 → ∀𝑞𝐿 ¬ 𝑞𝑈)
7877r19.21bi 2518 . . . . . . . . . . 11 ((𝜑𝑞𝐿) → ¬ 𝑞𝑈)
7960, 75, 78syl2anc 408 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ¬ 𝑞𝑈)
8059, 79pm2.65da 650 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → ¬ 𝑞 < 𝑥)
8152, 56, 80nltled 7876 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑥𝑞)
82 simprr 521 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑞 < 𝑟)
8352, 56, 58, 81, 82lelttrd 7880 . . . . . . 7 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑥 < 𝑟)
8449, 83rexlimddv 2552 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → 𝑥 < 𝑟)
8584ralrimiva 2503 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) → ∀𝑟𝑈 𝑥 < 𝑟)
8641, 85jca 304 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) → (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
8786ex 114 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)) → (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
8887reximdva 2532 . 2 (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)) → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
8912, 88mpd 13 1 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 697   = wceq 1331   ∈ wcel 1480  ∀wral 2414  ∃wrex 2415   ∩ cin 3065   ⊆ wss 3066  ∅c0 3358   class class class wbr 3924  (class class class)co 5767  ℝcr 7612   < clt 7793  [,]cicc 9667 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733  ax-pre-suploc 7734 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-sup 6864  df-inf 6865  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-icc 9671  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764 This theorem is referenced by:  dedekindicclemicc  12768
 Copyright terms: Public domain W3C validator