Step | Hyp | Ref
| Expression |
1 | | dedekindicc.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | dedekindicc.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
3 | | dedekindicc.lss |
. . 3
⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) |
4 | | dedekindicc.uss |
. . 3
⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) |
5 | | dedekindicc.lm |
. . 3
⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
6 | | dedekindicc.um |
. . 3
⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) |
7 | | dedekindicc.lr |
. . 3
⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
8 | | dedekindicc.ur |
. . 3
⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
9 | | dedekindicc.disj |
. . 3
⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
10 | | dedekindicc.loc |
. . 3
⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
11 | | dedekindicc.ab |
. . 3
⊢ (𝜑 → 𝐴 < 𝐵) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | dedekindicclemlub 13247 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) |
13 | | simpr 109 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) → 𝑞 ∈ 𝐿) |
14 | 3 | ad3antrrr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) → 𝐿 ⊆ (𝐴[,]𝐵)) |
15 | 14, 13 | sseldd 3143 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) → 𝑞 ∈ (𝐴[,]𝐵)) |
16 | | rsp 2513 |
. . . . . . . . . . 11
⊢
(∀𝑞 ∈
(𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟) → (𝑞 ∈ (𝐴[,]𝐵) → (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))) |
17 | 7, 16 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑞 ∈ (𝐴[,]𝐵) → (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))) |
18 | 17 | ad3antrrr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) → (𝑞 ∈ (𝐴[,]𝐵) → (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))) |
19 | 15, 18 | mpd 13 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) → (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
20 | 13, 19 | mpbid 146 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) → ∃𝑟 ∈ 𝐿 𝑞 < 𝑟) |
21 | | iccssre 9891 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
22 | 1, 2, 21 | syl2anc 409 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
23 | 22 | ad4antr 486 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → (𝐴[,]𝐵) ⊆ ℝ) |
24 | 15 | adantr 274 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑞 ∈ (𝐴[,]𝐵)) |
25 | 23, 24 | sseldd 3143 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑞 ∈ ℝ) |
26 | 3 | ad4antr 486 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝐿 ⊆ (𝐴[,]𝐵)) |
27 | | simprl 521 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑟 ∈ 𝐿) |
28 | 26, 27 | sseldd 3143 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑟 ∈ (𝐴[,]𝐵)) |
29 | 23, 28 | sseldd 3143 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑟 ∈ ℝ) |
30 | | simp-4r 532 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑥 ∈ (𝐴[,]𝐵)) |
31 | 23, 30 | sseldd 3143 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑥 ∈ ℝ) |
32 | | simprr 522 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑞 < 𝑟) |
33 | | breq2 3986 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑟 → (𝑥 < 𝑦 ↔ 𝑥 < 𝑟)) |
34 | 33 | notbid 657 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑟 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < 𝑟)) |
35 | | simprl 521 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) → ∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦) |
36 | 35 | ad2antrr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → ∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦) |
37 | 34, 36, 27 | rspcdva 2835 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → ¬ 𝑥 < 𝑟) |
38 | 29, 31, 37 | nltled 8019 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑟 ≤ 𝑥) |
39 | 25, 29, 31, 32, 38 | ltletrd 8321 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) ∧ (𝑟 ∈ 𝐿 ∧ 𝑞 < 𝑟)) → 𝑞 < 𝑥) |
40 | 20, 39 | rexlimddv 2588 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑞 ∈ 𝐿) → 𝑞 < 𝑥) |
41 | 40 | ralrimiva 2539 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) → ∀𝑞 ∈ 𝐿 𝑞 < 𝑥) |
42 | | simpr 109 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) → 𝑟 ∈ 𝑈) |
43 | | simplll 523 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) → 𝜑) |
44 | 4 | ad3antrrr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) → 𝑈 ⊆ (𝐴[,]𝐵)) |
45 | 44, 42 | sseldd 3143 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) → 𝑟 ∈ (𝐴[,]𝐵)) |
46 | | rsp 2513 |
. . . . . . . . . 10
⊢
(∀𝑟 ∈
(𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟) → (𝑟 ∈ (𝐴[,]𝐵) → (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))) |
47 | 8, 46 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (𝑟 ∈ (𝐴[,]𝐵) → (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))) |
48 | 43, 45, 47 | sylc 62 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) → (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
49 | 42, 48 | mpbid 146 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) → ∃𝑞 ∈ 𝑈 𝑞 < 𝑟) |
50 | 22 | ad4antr 486 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → (𝐴[,]𝐵) ⊆ ℝ) |
51 | | simp-4r 532 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑥 ∈ (𝐴[,]𝐵)) |
52 | 50, 51 | sseldd 3143 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑥 ∈ ℝ) |
53 | 4 | ad4antr 486 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑈 ⊆ (𝐴[,]𝐵)) |
54 | | simprl 521 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑞 ∈ 𝑈) |
55 | 53, 54 | sseldd 3143 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑞 ∈ (𝐴[,]𝐵)) |
56 | 50, 55 | sseldd 3143 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑞 ∈ ℝ) |
57 | 45 | adantr 274 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑟 ∈ (𝐴[,]𝐵)) |
58 | 50, 57 | sseldd 3143 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑟 ∈ ℝ) |
59 | 54 | adantr 274 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞 ∈ 𝑈) |
60 | 43 | ad2antrr 480 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝜑) |
61 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞 < 𝑥) |
62 | | breq1 3985 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑞 → (𝑦 < 𝑥 ↔ 𝑞 < 𝑥)) |
63 | | breq1 3985 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑞 → (𝑦 < 𝑧 ↔ 𝑞 < 𝑧)) |
64 | 63 | rexbidv 2467 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑞 → (∃𝑧 ∈ 𝐿 𝑦 < 𝑧 ↔ ∃𝑧 ∈ 𝐿 𝑞 < 𝑧)) |
65 | 62, 64 | imbi12d 233 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑞 → ((𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧) ↔ (𝑞 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑞 < 𝑧))) |
66 | | simprr 522 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧)) |
67 | 66 | ad3antrrr 484 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧)) |
68 | 55 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞 ∈ (𝐴[,]𝐵)) |
69 | 65, 67, 68 | rspcdva 2835 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → (𝑞 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑞 < 𝑧)) |
70 | 61, 69 | mpd 13 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ∃𝑧 ∈ 𝐿 𝑞 < 𝑧) |
71 | | breq2 3986 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑟 → (𝑞 < 𝑧 ↔ 𝑞 < 𝑟)) |
72 | 71 | cbvrexv 2693 |
. . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
𝐿 𝑞 < 𝑧 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟) |
73 | 70, 72 | sylib 121 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ∃𝑟 ∈ 𝐿 𝑞 < 𝑟) |
74 | 60, 68, 17 | sylc 62 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
75 | 73, 74 | mpbird 166 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞 ∈ 𝐿) |
76 | | disj 3457 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∩ 𝑈) = ∅ ↔ ∀𝑞 ∈ 𝐿 ¬ 𝑞 ∈ 𝑈) |
77 | 9, 76 | sylib 121 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑞 ∈ 𝐿 ¬ 𝑞 ∈ 𝑈) |
78 | 77 | r19.21bi 2554 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐿) → ¬ 𝑞 ∈ 𝑈) |
79 | 60, 75, 78 | syl2anc 409 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ¬ 𝑞 ∈ 𝑈) |
80 | 59, 79 | pm2.65da 651 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → ¬ 𝑞 < 𝑥) |
81 | 52, 56, 80 | nltled 8019 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑥 ≤ 𝑞) |
82 | | simprr 522 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑞 < 𝑟) |
83 | 52, 56, 58, 81, 82 | lelttrd 8023 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) ∧ (𝑞 ∈ 𝑈 ∧ 𝑞 < 𝑟)) → 𝑥 < 𝑟) |
84 | 49, 83 | rexlimddv 2588 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) ∧ 𝑟 ∈ 𝑈) → 𝑥 < 𝑟) |
85 | 84 | ralrimiva 2539 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) → ∀𝑟 ∈ 𝑈 𝑥 < 𝑟) |
86 | 41, 85 | jca 304 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) → (∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) |
87 | 86 | ex 114 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧)) → (∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟))) |
88 | 87 | reximdva 2568 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧)) → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟))) |
89 | 12, 88 | mpd 13 |
1
⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) |