ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemlu GIF version

Theorem dedekindicclemlu 14147
Description: Lemma for dedekindicc 14150. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a (𝜑𝐴 ∈ ℝ)
dedekindicc.b (𝜑𝐵 ∈ ℝ)
dedekindicc.lss (𝜑𝐿 ⊆ (𝐴[,]𝐵))
dedekindicc.uss (𝜑𝑈 ⊆ (𝐴[,]𝐵))
dedekindicc.lm (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
dedekindicc.um (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
dedekindicc.lr (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindicc.ur (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindicc.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindicc.loc (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
dedekindicc.ab (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
dedekindicclemlu (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
Distinct variable groups:   𝐴,𝑞,𝑟,𝑥   𝐵,𝑞,𝑟,𝑥   𝐿,𝑞,𝑟,𝑥   𝑈,𝑞,𝑟   𝜑,𝑞,𝑟,𝑥
Allowed substitution hint:   𝑈(𝑥)

Proof of Theorem dedekindicclemlu
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dedekindicc.a . . 3 (𝜑𝐴 ∈ ℝ)
2 dedekindicc.b . . 3 (𝜑𝐵 ∈ ℝ)
3 dedekindicc.lss . . 3 (𝜑𝐿 ⊆ (𝐴[,]𝐵))
4 dedekindicc.uss . . 3 (𝜑𝑈 ⊆ (𝐴[,]𝐵))
5 dedekindicc.lm . . 3 (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
6 dedekindicc.um . . 3 (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
7 dedekindicc.lr . . 3 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
8 dedekindicc.ur . . 3 (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
9 dedekindicc.disj . . 3 (𝜑 → (𝐿𝑈) = ∅)
10 dedekindicc.loc . . 3 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
11 dedekindicc.ab . . 3 (𝜑𝐴 < 𝐵)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11dedekindicclemlub 14146 . 2 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
13 simpr 110 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → 𝑞𝐿)
143ad3antrrr 492 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → 𝐿 ⊆ (𝐴[,]𝐵))
1514, 13sseldd 3158 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → 𝑞 ∈ (𝐴[,]𝐵))
16 rsp 2524 . . . . . . . . . . 11 (∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟) → (𝑞 ∈ (𝐴[,]𝐵) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟)))
177, 16syl 14 . . . . . . . . . 10 (𝜑 → (𝑞 ∈ (𝐴[,]𝐵) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟)))
1817ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → (𝑞 ∈ (𝐴[,]𝐵) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟)))
1915, 18mpd 13 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
2013, 19mpbid 147 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → ∃𝑟𝐿 𝑞 < 𝑟)
21 iccssre 9957 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
221, 2, 21syl2anc 411 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2322ad4antr 494 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → (𝐴[,]𝐵) ⊆ ℝ)
2415adantr 276 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑞 ∈ (𝐴[,]𝐵))
2523, 24sseldd 3158 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑞 ∈ ℝ)
263ad4antr 494 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝐿 ⊆ (𝐴[,]𝐵))
27 simprl 529 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑟𝐿)
2826, 27sseldd 3158 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑟 ∈ (𝐴[,]𝐵))
2923, 28sseldd 3158 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑟 ∈ ℝ)
30 simp-4r 542 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑥 ∈ (𝐴[,]𝐵))
3123, 30sseldd 3158 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑥 ∈ ℝ)
32 simprr 531 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑞 < 𝑟)
33 breq2 4009 . . . . . . . . . . 11 (𝑦 = 𝑟 → (𝑥 < 𝑦𝑥 < 𝑟))
3433notbid 667 . . . . . . . . . 10 (𝑦 = 𝑟 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < 𝑟))
35 simprl 529 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) → ∀𝑦𝐿 ¬ 𝑥 < 𝑦)
3635ad2antrr 488 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → ∀𝑦𝐿 ¬ 𝑥 < 𝑦)
3734, 36, 27rspcdva 2848 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → ¬ 𝑥 < 𝑟)
3829, 31, 37nltled 8080 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑟𝑥)
3925, 29, 31, 32, 38ltletrd 8382 . . . . . . 7 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑞 < 𝑥)
4020, 39rexlimddv 2599 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → 𝑞 < 𝑥)
4140ralrimiva 2550 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) → ∀𝑞𝐿 𝑞 < 𝑥)
42 simpr 110 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → 𝑟𝑈)
43 simplll 533 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → 𝜑)
444ad3antrrr 492 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → 𝑈 ⊆ (𝐴[,]𝐵))
4544, 42sseldd 3158 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → 𝑟 ∈ (𝐴[,]𝐵))
46 rsp 2524 . . . . . . . . . 10 (∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟) → (𝑟 ∈ (𝐴[,]𝐵) → (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟)))
478, 46syl 14 . . . . . . . . 9 (𝜑 → (𝑟 ∈ (𝐴[,]𝐵) → (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟)))
4843, 45, 47sylc 62 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
4942, 48mpbid 147 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → ∃𝑞𝑈 𝑞 < 𝑟)
5022ad4antr 494 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → (𝐴[,]𝐵) ⊆ ℝ)
51 simp-4r 542 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑥 ∈ (𝐴[,]𝐵))
5250, 51sseldd 3158 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑥 ∈ ℝ)
534ad4antr 494 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑈 ⊆ (𝐴[,]𝐵))
54 simprl 529 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑞𝑈)
5553, 54sseldd 3158 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑞 ∈ (𝐴[,]𝐵))
5650, 55sseldd 3158 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑞 ∈ ℝ)
5745adantr 276 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑟 ∈ (𝐴[,]𝐵))
5850, 57sseldd 3158 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑟 ∈ ℝ)
5954adantr 276 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞𝑈)
6043ad2antrr 488 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝜑)
61 simpr 110 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞 < 𝑥)
62 breq1 4008 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑞 → (𝑦 < 𝑥𝑞 < 𝑥))
63 breq1 4008 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑞 → (𝑦 < 𝑧𝑞 < 𝑧))
6463rexbidv 2478 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑞 → (∃𝑧𝐿 𝑦 < 𝑧 ↔ ∃𝑧𝐿 𝑞 < 𝑧))
6562, 64imbi12d 234 . . . . . . . . . . . . . . 15 (𝑦 = 𝑞 → ((𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧) ↔ (𝑞 < 𝑥 → ∃𝑧𝐿 𝑞 < 𝑧)))
66 simprr 531 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))
6766ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))
6855adantr 276 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞 ∈ (𝐴[,]𝐵))
6965, 67, 68rspcdva 2848 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → (𝑞 < 𝑥 → ∃𝑧𝐿 𝑞 < 𝑧))
7061, 69mpd 13 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ∃𝑧𝐿 𝑞 < 𝑧)
71 breq2 4009 . . . . . . . . . . . . . 14 (𝑧 = 𝑟 → (𝑞 < 𝑧𝑞 < 𝑟))
7271cbvrexv 2706 . . . . . . . . . . . . 13 (∃𝑧𝐿 𝑞 < 𝑧 ↔ ∃𝑟𝐿 𝑞 < 𝑟)
7370, 72sylib 122 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ∃𝑟𝐿 𝑞 < 𝑟)
7460, 68, 17sylc 62 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
7573, 74mpbird 167 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞𝐿)
76 disj 3473 . . . . . . . . . . . . 13 ((𝐿𝑈) = ∅ ↔ ∀𝑞𝐿 ¬ 𝑞𝑈)
779, 76sylib 122 . . . . . . . . . . . 12 (𝜑 → ∀𝑞𝐿 ¬ 𝑞𝑈)
7877r19.21bi 2565 . . . . . . . . . . 11 ((𝜑𝑞𝐿) → ¬ 𝑞𝑈)
7960, 75, 78syl2anc 411 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ¬ 𝑞𝑈)
8059, 79pm2.65da 661 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → ¬ 𝑞 < 𝑥)
8152, 56, 80nltled 8080 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑥𝑞)
82 simprr 531 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑞 < 𝑟)
8352, 56, 58, 81, 82lelttrd 8084 . . . . . . 7 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑥 < 𝑟)
8449, 83rexlimddv 2599 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → 𝑥 < 𝑟)
8584ralrimiva 2550 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) → ∀𝑟𝑈 𝑥 < 𝑟)
8641, 85jca 306 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) → (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
8786ex 115 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)) → (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
8887reximdva 2579 . 2 (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)) → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
8912, 88mpd 13 1 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  wral 2455  wrex 2456  cin 3130  wss 3131  c0 3424   class class class wbr 4005  (class class class)co 5877  cr 7812   < clt 7994  [,]cicc 9893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933  ax-pre-suploc 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-rp 9656  df-icc 9897  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010
This theorem is referenced by:  dedekindicclemicc  14149
  Copyright terms: Public domain W3C validator