ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemlu GIF version

Theorem dedekindicclemlu 14809
Description: Lemma for dedekindicc 14812. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a (𝜑𝐴 ∈ ℝ)
dedekindicc.b (𝜑𝐵 ∈ ℝ)
dedekindicc.lss (𝜑𝐿 ⊆ (𝐴[,]𝐵))
dedekindicc.uss (𝜑𝑈 ⊆ (𝐴[,]𝐵))
dedekindicc.lm (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
dedekindicc.um (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
dedekindicc.lr (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindicc.ur (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindicc.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindicc.loc (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
dedekindicc.ab (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
dedekindicclemlu (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
Distinct variable groups:   𝐴,𝑞,𝑟,𝑥   𝐵,𝑞,𝑟,𝑥   𝐿,𝑞,𝑟,𝑥   𝑈,𝑞,𝑟   𝜑,𝑞,𝑟,𝑥
Allowed substitution hint:   𝑈(𝑥)

Proof of Theorem dedekindicclemlu
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dedekindicc.a . . 3 (𝜑𝐴 ∈ ℝ)
2 dedekindicc.b . . 3 (𝜑𝐵 ∈ ℝ)
3 dedekindicc.lss . . 3 (𝜑𝐿 ⊆ (𝐴[,]𝐵))
4 dedekindicc.uss . . 3 (𝜑𝑈 ⊆ (𝐴[,]𝐵))
5 dedekindicc.lm . . 3 (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
6 dedekindicc.um . . 3 (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
7 dedekindicc.lr . . 3 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
8 dedekindicc.ur . . 3 (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
9 dedekindicc.disj . . 3 (𝜑 → (𝐿𝑈) = ∅)
10 dedekindicc.loc . . 3 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
11 dedekindicc.ab . . 3 (𝜑𝐴 < 𝐵)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11dedekindicclemlub 14808 . 2 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
13 simpr 110 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → 𝑞𝐿)
143ad3antrrr 492 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → 𝐿 ⊆ (𝐴[,]𝐵))
1514, 13sseldd 3181 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → 𝑞 ∈ (𝐴[,]𝐵))
16 rsp 2541 . . . . . . . . . . 11 (∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟) → (𝑞 ∈ (𝐴[,]𝐵) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟)))
177, 16syl 14 . . . . . . . . . 10 (𝜑 → (𝑞 ∈ (𝐴[,]𝐵) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟)))
1817ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → (𝑞 ∈ (𝐴[,]𝐵) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟)))
1915, 18mpd 13 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
2013, 19mpbid 147 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → ∃𝑟𝐿 𝑞 < 𝑟)
21 iccssre 10024 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
221, 2, 21syl2anc 411 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2322ad4antr 494 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → (𝐴[,]𝐵) ⊆ ℝ)
2415adantr 276 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑞 ∈ (𝐴[,]𝐵))
2523, 24sseldd 3181 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑞 ∈ ℝ)
263ad4antr 494 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝐿 ⊆ (𝐴[,]𝐵))
27 simprl 529 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑟𝐿)
2826, 27sseldd 3181 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑟 ∈ (𝐴[,]𝐵))
2923, 28sseldd 3181 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑟 ∈ ℝ)
30 simp-4r 542 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑥 ∈ (𝐴[,]𝐵))
3123, 30sseldd 3181 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑥 ∈ ℝ)
32 simprr 531 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑞 < 𝑟)
33 breq2 4034 . . . . . . . . . . 11 (𝑦 = 𝑟 → (𝑥 < 𝑦𝑥 < 𝑟))
3433notbid 668 . . . . . . . . . 10 (𝑦 = 𝑟 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < 𝑟))
35 simprl 529 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) → ∀𝑦𝐿 ¬ 𝑥 < 𝑦)
3635ad2antrr 488 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → ∀𝑦𝐿 ¬ 𝑥 < 𝑦)
3734, 36, 27rspcdva 2870 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → ¬ 𝑥 < 𝑟)
3829, 31, 37nltled 8142 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑟𝑥)
3925, 29, 31, 32, 38ltletrd 8444 . . . . . . 7 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) ∧ (𝑟𝐿𝑞 < 𝑟)) → 𝑞 < 𝑥)
4020, 39rexlimddv 2616 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑞𝐿) → 𝑞 < 𝑥)
4140ralrimiva 2567 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) → ∀𝑞𝐿 𝑞 < 𝑥)
42 simpr 110 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → 𝑟𝑈)
43 simplll 533 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → 𝜑)
444ad3antrrr 492 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → 𝑈 ⊆ (𝐴[,]𝐵))
4544, 42sseldd 3181 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → 𝑟 ∈ (𝐴[,]𝐵))
46 rsp 2541 . . . . . . . . . 10 (∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟) → (𝑟 ∈ (𝐴[,]𝐵) → (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟)))
478, 46syl 14 . . . . . . . . 9 (𝜑 → (𝑟 ∈ (𝐴[,]𝐵) → (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟)))
4843, 45, 47sylc 62 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
4942, 48mpbid 147 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → ∃𝑞𝑈 𝑞 < 𝑟)
5022ad4antr 494 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → (𝐴[,]𝐵) ⊆ ℝ)
51 simp-4r 542 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑥 ∈ (𝐴[,]𝐵))
5250, 51sseldd 3181 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑥 ∈ ℝ)
534ad4antr 494 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑈 ⊆ (𝐴[,]𝐵))
54 simprl 529 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑞𝑈)
5553, 54sseldd 3181 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑞 ∈ (𝐴[,]𝐵))
5650, 55sseldd 3181 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑞 ∈ ℝ)
5745adantr 276 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑟 ∈ (𝐴[,]𝐵))
5850, 57sseldd 3181 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑟 ∈ ℝ)
5954adantr 276 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞𝑈)
6043ad2antrr 488 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝜑)
61 simpr 110 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞 < 𝑥)
62 breq1 4033 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑞 → (𝑦 < 𝑥𝑞 < 𝑥))
63 breq1 4033 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑞 → (𝑦 < 𝑧𝑞 < 𝑧))
6463rexbidv 2495 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑞 → (∃𝑧𝐿 𝑦 < 𝑧 ↔ ∃𝑧𝐿 𝑞 < 𝑧))
6562, 64imbi12d 234 . . . . . . . . . . . . . . 15 (𝑦 = 𝑞 → ((𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧) ↔ (𝑞 < 𝑥 → ∃𝑧𝐿 𝑞 < 𝑧)))
66 simprr 531 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))
6766ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))
6855adantr 276 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞 ∈ (𝐴[,]𝐵))
6965, 67, 68rspcdva 2870 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → (𝑞 < 𝑥 → ∃𝑧𝐿 𝑞 < 𝑧))
7061, 69mpd 13 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ∃𝑧𝐿 𝑞 < 𝑧)
71 breq2 4034 . . . . . . . . . . . . . 14 (𝑧 = 𝑟 → (𝑞 < 𝑧𝑞 < 𝑟))
7271cbvrexv 2727 . . . . . . . . . . . . 13 (∃𝑧𝐿 𝑞 < 𝑧 ↔ ∃𝑟𝐿 𝑞 < 𝑟)
7370, 72sylib 122 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ∃𝑟𝐿 𝑞 < 𝑟)
7460, 68, 17sylc 62 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
7573, 74mpbird 167 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → 𝑞𝐿)
76 disj 3496 . . . . . . . . . . . . 13 ((𝐿𝑈) = ∅ ↔ ∀𝑞𝐿 ¬ 𝑞𝑈)
779, 76sylib 122 . . . . . . . . . . . 12 (𝜑 → ∀𝑞𝐿 ¬ 𝑞𝑈)
7877r19.21bi 2582 . . . . . . . . . . 11 ((𝜑𝑞𝐿) → ¬ 𝑞𝑈)
7960, 75, 78syl2anc 411 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) ∧ 𝑞 < 𝑥) → ¬ 𝑞𝑈)
8059, 79pm2.65da 662 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → ¬ 𝑞 < 𝑥)
8152, 56, 80nltled 8142 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑥𝑞)
82 simprr 531 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑞 < 𝑟)
8352, 56, 58, 81, 82lelttrd 8146 . . . . . . 7 (((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) ∧ (𝑞𝑈𝑞 < 𝑟)) → 𝑥 < 𝑟)
8449, 83rexlimddv 2616 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) ∧ 𝑟𝑈) → 𝑥 < 𝑟)
8584ralrimiva 2567 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) → ∀𝑟𝑈 𝑥 < 𝑟)
8641, 85jca 306 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧))) → (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
8786ex 115 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)) → (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
8887reximdva 2596 . 2 (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)) → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
8912, 88mpd 13 1 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164  wral 2472  wrex 2473  cin 3153  wss 3154  c0 3447   class class class wbr 4030  (class class class)co 5919  cr 7873   < clt 8056  [,]cicc 9960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994  ax-pre-suploc 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-icc 9964  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146
This theorem is referenced by:  dedekindicclemicc  14811
  Copyright terms: Public domain W3C validator