| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringsrg | GIF version | ||
| Description: Any ring is also a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| ringsrg | ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcmn 13828 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | |
| 2 | eqid 2205 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 3 | 2 | ringmgp 13797 | . 2 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 4 | eqid 2205 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | eqid 2205 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 6 | eqid 2205 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 7 | 4, 2, 5, 6 | isring 13795 | . . . 4 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
| 8 | 7 | simp3bi 1017 | . . 3 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧)))) |
| 9 | eqid 2205 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 10 | 4, 6, 9 | ringlz 13838 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅)) |
| 11 | 4, 6, 9 | ringrz 13839 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 12 | 10, 11 | jca 306 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
| 13 | 12 | ralrimiva 2579 | . . 3 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝑅)(((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
| 14 | r19.26 2632 | . . 3 ⊢ (∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) ∧ (((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) ↔ (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) ∧ ∀𝑥 ∈ (Base‘𝑅)(((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)))) | |
| 15 | 8, 13, 14 | sylanbrc 417 | . 2 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) ∧ (((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)))) |
| 16 | 4, 2, 5, 6, 9 | issrg 13760 | . 2 ⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) ∧ (((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅))))) |
| 17 | 1, 3, 15, 16 | syl3anbrc 1184 | 1 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 ∀wral 2484 ‘cfv 5272 (class class class)co 5946 Basecbs 12865 +gcplusg 12942 .rcmulr 12943 0gc0g 13121 Mndcmnd 13281 Grpcgrp 13365 CMndccmn 13653 mulGrpcmgp 13715 SRingcsrg 13758 Ringcrg 13791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-pre-ltirr 8039 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-ltxr 8114 df-inn 9039 df-2 9097 df-3 9098 df-ndx 12868 df-slot 12869 df-base 12871 df-sets 12872 df-plusg 12955 df-mulr 12956 df-0g 13123 df-mgm 13221 df-sgrp 13267 df-mnd 13282 df-grp 13368 df-minusg 13369 df-cmn 13655 df-abl 13656 df-mgp 13716 df-ur 13755 df-srg 13759 df-ring 13793 |
| This theorem is referenced by: qusring2 13861 dvdsrcl2 13894 dvdsrid 13895 dvdsrtr 13896 dvdsrmul1 13897 dvdsrneg 13898 dvdsr01 13899 dvdsr02 13900 1unit 13902 opprunitd 13905 crngunit 13906 unitmulcl 13908 unitmulclb 13909 unitgrp 13911 unitabl 13912 unitgrpid 13913 unitsubm 13914 unitinvcl 13918 unitinvinv 13919 ringinvcl 13920 unitlinv 13921 unitrinv 13922 unitnegcl 13925 dvrvald 13929 unitdvcl 13931 dvrid 13932 dvrcan1 13935 dvrcan3 13936 dvreq1 13937 dvrdir 13938 rdivmuldivd 13939 unitpropdg 13943 invrpropdg 13944 rhmdvdsr 13970 elrhmunit 13972 rhmunitinv 13973 subrgdvds 14030 subrguss 14031 subrginv 14032 subrgunit 14034 subrgugrp 14035 subrgintm 14038 unitrrg 14062 rspsn 14329 cnfldui 14384 dvdsrzring 14398 znunit 14454 |
| Copyright terms: Public domain | W3C validator |