| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzle | GIF version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
| Ref | Expression |
|---|---|
| eluzle | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 9626 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 2 | 1 | simp3bi 1016 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 ≤ cle 8081 ℤcz 9345 ℤ≥cuz 9620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-cnex 7989 ax-resscn 7990 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-neg 8219 df-z 9346 df-uz 9621 |
| This theorem is referenced by: uztrn 9637 uzneg 9639 uzss 9641 uz11 9643 eluzp1l 9645 uzm1 9651 uzin 9653 uzind4 9681 elfz5 10111 elfzle1 10121 elfzle2 10122 elfzle3 10124 uzsplit 10186 uzdisj 10187 uznfz 10197 elfz2nn0 10206 uzsubfz0 10223 nn0disj 10232 fzouzdisj 10275 elfzonelfzo 10325 infssuzex 10342 suprzubdc 10345 fldiv4lem1div2uz2 10415 mulp1mod1 10476 m1modge3gt1 10482 uzennn 10547 seq3split 10599 seq3f1olemqsumk 10623 seq3f1o 10628 seq3coll 10953 seq3shft 11022 cvg1nlemcau 11168 resqrexlemcvg 11203 resqrexlemga 11207 summodclem2a 11565 fsum3 11571 fsum3cvg3 11580 fsumadd 11590 sumsnf 11593 fsummulc2 11632 isumshft 11674 divcnv 11681 geolim2 11696 cvgratnnlemseq 11710 cvgratnnlemsumlt 11712 cvgratz 11716 mertenslemi1 11719 prodmodclem3 11759 prodmodclem2a 11760 fprodntrivap 11768 prodsnf 11776 fprodeq0 11801 efcllemp 11842 dvdsbnd 12150 uzwodc 12231 ncoprmgcdne1b 12284 isprm5 12337 hashdvds 12416 pcmpt2 12540 pcfaclem 12545 pcfac 12546 nninfdclemp1 12694 strext 12810 gsumfzval 13095 znidom 14291 lgslem1 15349 lgsdirprm 15383 lgseisen 15423 cvgcmp2nlemabs 15789 |
| Copyright terms: Public domain | W3C validator |