![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluzle | GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
Ref | Expression |
---|---|
eluzle | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9601 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
2 | 1 | simp3bi 1016 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 ≤ cle 8057 ℤcz 9320 ℤ≥cuz 9595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-ov 5922 df-neg 8195 df-z 9321 df-uz 9596 |
This theorem is referenced by: uztrn 9612 uzneg 9614 uzss 9616 uz11 9618 eluzp1l 9620 uzm1 9626 uzin 9628 uzind4 9656 elfz5 10086 elfzle1 10096 elfzle2 10097 elfzle3 10099 uzsplit 10161 uzdisj 10162 uznfz 10172 elfz2nn0 10181 uzsubfz0 10198 nn0disj 10207 fzouzdisj 10250 elfzonelfzo 10300 fldiv4lem1div2uz2 10378 mulp1mod1 10439 m1modge3gt1 10445 uzennn 10510 seq3split 10562 seq3f1olemqsumk 10586 seq3f1o 10591 seq3coll 10916 seq3shft 10985 cvg1nlemcau 11131 resqrexlemcvg 11166 resqrexlemga 11170 summodclem2a 11527 fsum3 11533 fsum3cvg3 11542 fsumadd 11552 sumsnf 11555 fsummulc2 11594 isumshft 11636 divcnv 11643 geolim2 11658 cvgratnnlemseq 11672 cvgratnnlemsumlt 11674 cvgratz 11678 mertenslemi1 11681 prodmodclem3 11721 prodmodclem2a 11722 fprodntrivap 11730 prodsnf 11738 fprodeq0 11763 efcllemp 11804 infssuzex 12089 suprzubdc 12092 dvdsbnd 12096 uzwodc 12177 ncoprmgcdne1b 12230 isprm5 12283 hashdvds 12362 pcmpt2 12485 pcfaclem 12490 pcfac 12491 nninfdclemp1 12610 strext 12726 gsumfzval 12977 znidom 14156 lgslem1 15157 lgsdirprm 15191 lgseisen 15231 cvgcmp2nlemabs 15592 |
Copyright terms: Public domain | W3C validator |