Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluzle | GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
Ref | Expression |
---|---|
eluzle | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9472 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
2 | 1 | simp3bi 1004 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 ≤ cle 7934 ℤcz 9191 ℤ≥cuz 9466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-neg 8072 df-z 9192 df-uz 9467 |
This theorem is referenced by: uztrn 9482 uzneg 9484 uzss 9486 uz11 9488 eluzp1l 9490 uzm1 9496 uzin 9498 uzind4 9526 elfz5 9952 elfzle1 9962 elfzle2 9963 elfzle3 9965 uzsplit 10027 uzdisj 10028 uznfz 10038 elfz2nn0 10047 uzsubfz0 10064 nn0disj 10073 fzouzdisj 10115 elfzonelfzo 10165 mulp1mod1 10300 m1modge3gt1 10306 uzennn 10371 seq3split 10414 seq3f1olemqsumk 10434 seq3f1o 10439 seq3coll 10755 seq3shft 10780 cvg1nlemcau 10926 resqrexlemcvg 10961 resqrexlemga 10965 summodclem2a 11322 fsum3 11328 fsum3cvg3 11337 fsumadd 11347 sumsnf 11350 fsummulc2 11389 isumshft 11431 divcnv 11438 geolim2 11453 cvgratnnlemseq 11467 cvgratnnlemsumlt 11469 cvgratz 11473 mertenslemi1 11476 prodmodclem3 11516 prodmodclem2a 11517 fprodntrivap 11525 prodsnf 11533 fprodeq0 11558 efcllemp 11599 infssuzex 11882 suprzubdc 11885 dvdsbnd 11889 uzwodc 11970 ncoprmgcdne1b 12021 isprm5 12074 hashdvds 12153 pcmpt2 12274 pcfaclem 12279 pcfac 12280 nninfdclemp1 12383 lgslem1 13541 lgsdirprm 13575 cvgcmp2nlemabs 13911 |
Copyright terms: Public domain | W3C validator |