Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluzle | GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
Ref | Expression |
---|---|
eluzle | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9493 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
2 | 1 | simp3bi 1009 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 class class class wbr 3989 ‘cfv 5198 ≤ cle 7955 ℤcz 9212 ℤ≥cuz 9487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-neg 8093 df-z 9213 df-uz 9488 |
This theorem is referenced by: uztrn 9503 uzneg 9505 uzss 9507 uz11 9509 eluzp1l 9511 uzm1 9517 uzin 9519 uzind4 9547 elfz5 9973 elfzle1 9983 elfzle2 9984 elfzle3 9986 uzsplit 10048 uzdisj 10049 uznfz 10059 elfz2nn0 10068 uzsubfz0 10085 nn0disj 10094 fzouzdisj 10136 elfzonelfzo 10186 mulp1mod1 10321 m1modge3gt1 10327 uzennn 10392 seq3split 10435 seq3f1olemqsumk 10455 seq3f1o 10460 seq3coll 10777 seq3shft 10802 cvg1nlemcau 10948 resqrexlemcvg 10983 resqrexlemga 10987 summodclem2a 11344 fsum3 11350 fsum3cvg3 11359 fsumadd 11369 sumsnf 11372 fsummulc2 11411 isumshft 11453 divcnv 11460 geolim2 11475 cvgratnnlemseq 11489 cvgratnnlemsumlt 11491 cvgratz 11495 mertenslemi1 11498 prodmodclem3 11538 prodmodclem2a 11539 fprodntrivap 11547 prodsnf 11555 fprodeq0 11580 efcllemp 11621 infssuzex 11904 suprzubdc 11907 dvdsbnd 11911 uzwodc 11992 ncoprmgcdne1b 12043 isprm5 12096 hashdvds 12175 pcmpt2 12296 pcfaclem 12301 pcfac 12302 nninfdclemp1 12405 lgslem1 13695 lgsdirprm 13729 cvgcmp2nlemabs 14064 |
Copyright terms: Public domain | W3C validator |