| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzle | GIF version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
| Ref | Expression |
|---|---|
| eluzle | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 9684 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 2 | 1 | simp3bi 1017 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 class class class wbr 4054 ‘cfv 5285 ≤ cle 8138 ℤcz 9402 ℤ≥cuz 9678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-cnex 8046 ax-resscn 8047 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 df-ov 5965 df-neg 8276 df-z 9403 df-uz 9679 |
| This theorem is referenced by: uztrn 9695 uzneg 9697 uzss 9699 uz11 9701 eluzp1l 9703 uzm1 9709 uzin 9711 uzind4 9739 elfz5 10169 elfzle1 10179 elfzle2 10180 elfzle3 10182 uzsplit 10244 uzdisj 10245 uznfz 10255 elfz2nn0 10264 uzsubfz0 10281 nn0disj 10290 fzouzdisj 10334 fzoun 10335 elfzonelfzo 10391 infssuzex 10408 suprzubdc 10411 fldiv4lem1div2uz2 10481 mulp1mod1 10542 m1modge3gt1 10548 uzennn 10613 seq3split 10665 seq3f1olemqsumk 10689 seq3f1o 10694 seq3coll 11019 swrdlen2 11148 swrdfv2 11149 seq3shft 11234 cvg1nlemcau 11380 resqrexlemcvg 11415 resqrexlemga 11419 summodclem2a 11777 fsum3 11783 fsum3cvg3 11792 fsumadd 11802 sumsnf 11805 fsummulc2 11844 isumshft 11886 divcnv 11893 geolim2 11908 cvgratnnlemseq 11922 cvgratnnlemsumlt 11924 cvgratz 11928 mertenslemi1 11931 prodmodclem3 11971 prodmodclem2a 11972 fprodntrivap 11980 prodsnf 11988 fprodeq0 12013 efcllemp 12054 dvdsbnd 12362 uzwodc 12443 ncoprmgcdne1b 12496 isprm5 12549 hashdvds 12628 pcmpt2 12752 pcfaclem 12757 pcfac 12758 nninfdclemp1 12906 strext 13022 gsumfzval 13308 znidom 14504 lgslem1 15562 lgsdirprm 15596 lgseisen 15636 cvgcmp2nlemabs 16143 |
| Copyright terms: Public domain | W3C validator |