| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzle | GIF version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
| Ref | Expression |
|---|---|
| eluzle | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 9653 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 2 | 1 | simp3bi 1016 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 class class class wbr 4043 ‘cfv 5270 ≤ cle 8107 ℤcz 9371 ℤ≥cuz 9647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-cnex 8015 ax-resscn 8016 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-ov 5946 df-neg 8245 df-z 9372 df-uz 9648 |
| This theorem is referenced by: uztrn 9664 uzneg 9666 uzss 9668 uz11 9670 eluzp1l 9672 uzm1 9678 uzin 9680 uzind4 9708 elfz5 10138 elfzle1 10148 elfzle2 10149 elfzle3 10151 uzsplit 10213 uzdisj 10214 uznfz 10224 elfz2nn0 10233 uzsubfz0 10250 nn0disj 10259 fzouzdisj 10302 elfzonelfzo 10357 infssuzex 10374 suprzubdc 10377 fldiv4lem1div2uz2 10447 mulp1mod1 10508 m1modge3gt1 10514 uzennn 10579 seq3split 10631 seq3f1olemqsumk 10655 seq3f1o 10660 seq3coll 10985 seq3shft 11120 cvg1nlemcau 11266 resqrexlemcvg 11301 resqrexlemga 11305 summodclem2a 11663 fsum3 11669 fsum3cvg3 11678 fsumadd 11688 sumsnf 11691 fsummulc2 11730 isumshft 11772 divcnv 11779 geolim2 11794 cvgratnnlemseq 11808 cvgratnnlemsumlt 11810 cvgratz 11814 mertenslemi1 11817 prodmodclem3 11857 prodmodclem2a 11858 fprodntrivap 11866 prodsnf 11874 fprodeq0 11899 efcllemp 11940 dvdsbnd 12248 uzwodc 12329 ncoprmgcdne1b 12382 isprm5 12435 hashdvds 12514 pcmpt2 12638 pcfaclem 12643 pcfac 12644 nninfdclemp1 12792 strext 12908 gsumfzval 13194 znidom 14390 lgslem1 15448 lgsdirprm 15482 lgseisen 15522 cvgcmp2nlemabs 15933 |
| Copyright terms: Public domain | W3C validator |