Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluzle | GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
Ref | Expression |
---|---|
eluzle | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9480 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
2 | 1 | simp3bi 1009 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 class class class wbr 3987 ‘cfv 5196 ≤ cle 7942 ℤcz 9199 ℤ≥cuz 9474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-cnex 7852 ax-resscn 7853 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-ov 5853 df-neg 8080 df-z 9200 df-uz 9475 |
This theorem is referenced by: uztrn 9490 uzneg 9492 uzss 9494 uz11 9496 eluzp1l 9498 uzm1 9504 uzin 9506 uzind4 9534 elfz5 9960 elfzle1 9970 elfzle2 9971 elfzle3 9973 uzsplit 10035 uzdisj 10036 uznfz 10046 elfz2nn0 10055 uzsubfz0 10072 nn0disj 10081 fzouzdisj 10123 elfzonelfzo 10173 mulp1mod1 10308 m1modge3gt1 10314 uzennn 10379 seq3split 10422 seq3f1olemqsumk 10442 seq3f1o 10447 seq3coll 10764 seq3shft 10789 cvg1nlemcau 10935 resqrexlemcvg 10970 resqrexlemga 10974 summodclem2a 11331 fsum3 11337 fsum3cvg3 11346 fsumadd 11356 sumsnf 11359 fsummulc2 11398 isumshft 11440 divcnv 11447 geolim2 11462 cvgratnnlemseq 11476 cvgratnnlemsumlt 11478 cvgratz 11482 mertenslemi1 11485 prodmodclem3 11525 prodmodclem2a 11526 fprodntrivap 11534 prodsnf 11542 fprodeq0 11567 efcllemp 11608 infssuzex 11891 suprzubdc 11894 dvdsbnd 11898 uzwodc 11979 ncoprmgcdne1b 12030 isprm5 12083 hashdvds 12162 pcmpt2 12283 pcfaclem 12288 pcfac 12289 nninfdclemp1 12392 lgslem1 13616 lgsdirprm 13650 cvgcmp2nlemabs 13986 |
Copyright terms: Public domain | W3C validator |