| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzle | GIF version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
| Ref | Expression |
|---|---|
| eluzle | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 9724 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 2 | 1 | simp3bi 1038 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 class class class wbr 4082 ‘cfv 5317 ≤ cle 8178 ℤcz 9442 ℤ≥cuz 9718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-neg 8316 df-z 9443 df-uz 9719 |
| This theorem is referenced by: uztrn 9735 uzneg 9737 uzss 9739 uz11 9741 eluzp1l 9743 uzm1 9749 uzin 9751 uzind4 9779 elfz5 10209 elfzle1 10219 elfzle2 10220 elfzle3 10222 uzsplit 10284 uzdisj 10285 uznfz 10295 elfz2nn0 10304 uzsubfz0 10321 nn0disj 10330 fzouzdisj 10374 fzoun 10375 elfzonelfzo 10431 infssuzex 10448 suprzubdc 10451 fldiv4lem1div2uz2 10521 mulp1mod1 10582 m1modge3gt1 10588 uzennn 10653 seq3split 10705 seq3f1olemqsumk 10729 seq3f1o 10734 seq3coll 11059 swrdlen2 11189 swrdfv2 11190 seq3shft 11344 cvg1nlemcau 11490 resqrexlemcvg 11525 resqrexlemga 11529 summodclem2a 11887 fsum3 11893 fsum3cvg3 11902 fsumadd 11912 sumsnf 11915 fsummulc2 11954 isumshft 11996 divcnv 12003 geolim2 12018 cvgratnnlemseq 12032 cvgratnnlemsumlt 12034 cvgratz 12038 mertenslemi1 12041 prodmodclem3 12081 prodmodclem2a 12082 fprodntrivap 12090 prodsnf 12098 fprodeq0 12123 efcllemp 12164 dvdsbnd 12472 uzwodc 12553 ncoprmgcdne1b 12606 isprm5 12659 hashdvds 12738 pcmpt2 12862 pcfaclem 12867 pcfac 12868 nninfdclemp1 13016 strext 13133 gsumfzval 13419 znidom 14615 lgslem1 15673 lgsdirprm 15707 lgseisen 15747 cvgcmp2nlemabs 16359 |
| Copyright terms: Public domain | W3C validator |