ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subggrp GIF version

Theorem subggrp 13513
Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subggrp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subggrp (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)

Proof of Theorem subggrp
StepHypRef Expression
1 subggrp.h . 2 𝐻 = (𝐺s 𝑆)
2 eqid 2205 . . . 4 (Base‘𝐺) = (Base‘𝐺)
32issubg 13509 . . 3 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺s 𝑆) ∈ Grp))
43simp3bi 1017 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
51, 4eqeltrid 2292 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176  wss 3166  cfv 5271  (class class class)co 5944  Basecbs 12832  s cress 12833  Grpcgrp 13332  SubGrpcsubg 13503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-inn 9037  df-ndx 12835  df-slot 12836  df-base 12838  df-subg 13506
This theorem is referenced by:  subg0  13516  subginv  13517  subg0cl  13518  subginvcl  13519  subgcl  13520  issubg2m  13525  issubgrpd  13527  subsubg  13533  resghm  13596  resghm2b  13598  subgabl  13668  issubrg2  14003  islss3  14141  mplgrpfi  14468
  Copyright terms: Public domain W3C validator