| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subggrp | GIF version | ||
| Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subggrp.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| subggrp | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subggrp.h | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 2 | eqid 2229 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | 2 | issubg 13710 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 4 | 3 | simp3bi 1038 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 5 | 1, 4 | eqeltrid 2316 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 ‘cfv 5318 (class class class)co 6001 Basecbs 13032 ↾s cress 13033 Grpcgrp 13533 SubGrpcsubg 13704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6004 df-inn 9111 df-ndx 13035 df-slot 13036 df-base 13038 df-subg 13707 |
| This theorem is referenced by: subg0 13717 subginv 13718 subg0cl 13719 subginvcl 13720 subgcl 13721 issubg2m 13726 issubgrpd 13728 subsubg 13734 resghm 13797 resghm2b 13799 subgabl 13869 issubrg2 14205 islss3 14343 mplgrpfi 14670 |
| Copyright terms: Public domain | W3C validator |