![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > srglz | GIF version |
Description: The zero of a semiring is a left-absorbing element. (Contributed by AV, 23-Aug-2019.) |
Ref | Expression |
---|---|
srgz.b | ⊢ 𝐵 = (Base‘𝑅) |
srgz.t | ⊢ · = (.r‘𝑅) |
srgz.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
srglz | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgz.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2193 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
3 | eqid 2193 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | srgz.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
5 | srgz.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
6 | 1, 2, 3, 4, 5 | issrg 13461 | . . . . . 6 ⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |
7 | 6 | simp3bi 1016 | . . . . 5 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) |
8 | 7 | r19.21bi 2582 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) |
9 | 8 | simprld 530 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵) → ( 0 · 𝑥) = 0 ) |
10 | 9 | ralrimiva 2567 | . 2 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ( 0 · 𝑥) = 0 ) |
11 | oveq2 5926 | . . . 4 ⊢ (𝑥 = 𝑋 → ( 0 · 𝑥) = ( 0 · 𝑋)) | |
12 | 11 | eqeq1d 2202 | . . 3 ⊢ (𝑥 = 𝑋 → (( 0 · 𝑥) = 0 ↔ ( 0 · 𝑋) = 0 )) |
13 | 12 | rspcv 2860 | . 2 ⊢ (𝑋 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ( 0 · 𝑥) = 0 → ( 0 · 𝑋) = 0 )) |
14 | 10, 13 | mpan9 281 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 .rcmulr 12696 0gc0g 12867 Mndcmnd 12997 CMndccmn 13354 mulGrpcmgp 13416 SRingcsrg 13459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-mulr 12709 df-0g 12869 df-srg 13460 |
This theorem is referenced by: srgmulgass 13485 srgrmhm 13490 |
Copyright terms: Public domain | W3C validator |