| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > srglz | GIF version | ||
| Description: The zero of a semiring is a left-absorbing element. (Contributed by AV, 23-Aug-2019.) |
| Ref | Expression |
|---|---|
| srgz.b | ⊢ 𝐵 = (Base‘𝑅) |
| srgz.t | ⊢ · = (.r‘𝑅) |
| srgz.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| srglz | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgz.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2206 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 3 | eqid 2206 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | srgz.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 5 | srgz.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 6 | 1, 2, 3, 4, 5 | issrg 13771 | . . . . . 6 ⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |
| 7 | 6 | simp3bi 1017 | . . . . 5 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) |
| 8 | 7 | r19.21bi 2595 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) |
| 9 | 8 | simprld 530 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵) → ( 0 · 𝑥) = 0 ) |
| 10 | 9 | ralrimiva 2580 | . 2 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ( 0 · 𝑥) = 0 ) |
| 11 | oveq2 5959 | . . . 4 ⊢ (𝑥 = 𝑋 → ( 0 · 𝑥) = ( 0 · 𝑋)) | |
| 12 | 11 | eqeq1d 2215 | . . 3 ⊢ (𝑥 = 𝑋 → (( 0 · 𝑥) = 0 ↔ ( 0 · 𝑋) = 0 )) |
| 13 | 12 | rspcv 2874 | . 2 ⊢ (𝑋 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ( 0 · 𝑥) = 0 → ( 0 · 𝑋) = 0 )) |
| 14 | 10, 13 | mpan9 281 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 +gcplusg 12953 .rcmulr 12954 0gc0g 13132 Mndcmnd 13292 CMndccmn 13664 mulGrpcmgp 13726 SRingcsrg 13769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-riota 5906 df-ov 5954 df-inn 9044 df-2 9102 df-3 9103 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-mulr 12967 df-0g 13134 df-srg 13770 |
| This theorem is referenced by: srgmulgass 13795 srgrmhm 13800 |
| Copyright terms: Public domain | W3C validator |