![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sn0top | GIF version |
Description: The singleton of the empty set is a topology. (Contributed by Stefan Allan, 3-Mar-2006.) (Proof shortened by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
sn0top | ⊢ {∅} ∈ Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn0topon 13627 | . 2 ⊢ {∅} ∈ (TopOn‘∅) | |
2 | 1 | topontopi 13555 | 1 ⊢ {∅} ∈ Top |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 ∅c0 3424 {csn 3594 Topctop 13536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-top 13537 df-topon 13550 |
This theorem is referenced by: restsn 13719 |
Copyright terms: Public domain | W3C validator |