Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > restsn | GIF version |
Description: The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
restsn | ⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t 𝐴) = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn0top 12729 | . . . 4 ⊢ {∅} ∈ Top | |
2 | elrest 12563 | . . . 4 ⊢ (({∅} ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴))) | |
3 | 1, 2 | mpan 421 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴))) |
4 | 0ex 4109 | . . . . 5 ⊢ ∅ ∈ V | |
5 | ineq1 3316 | . . . . . . 7 ⊢ (𝑦 = ∅ → (𝑦 ∩ 𝐴) = (∅ ∩ 𝐴)) | |
6 | 0in 3444 | . . . . . . 7 ⊢ (∅ ∩ 𝐴) = ∅ | |
7 | 5, 6 | eqtrdi 2215 | . . . . . 6 ⊢ (𝑦 = ∅ → (𝑦 ∩ 𝐴) = ∅) |
8 | 7 | eqeq2d 2177 | . . . . 5 ⊢ (𝑦 = ∅ → (𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 = ∅)) |
9 | 4, 8 | rexsn 3620 | . . . 4 ⊢ (∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 = ∅) |
10 | velsn 3593 | . . . 4 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
11 | 9, 10 | bitr4i 186 | . . 3 ⊢ (∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 ∈ {∅}) |
12 | 3, 11 | bitrdi 195 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ 𝑥 ∈ {∅})) |
13 | 12 | eqrdv 2163 | 1 ⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t 𝐴) = {∅}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 ∩ cin 3115 ∅c0 3409 {csn 3576 (class class class)co 5842 ↾t crest 12556 Topctop 12635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-rest 12558 df-top 12636 df-topon 12649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |