Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > restsn | GIF version |
Description: The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
restsn | ⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t 𝐴) = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn0top 12883 | . . . 4 ⊢ {∅} ∈ Top | |
2 | elrest 12586 | . . . 4 ⊢ (({∅} ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴))) | |
3 | 1, 2 | mpan 422 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴))) |
4 | 0ex 4116 | . . . . 5 ⊢ ∅ ∈ V | |
5 | ineq1 3321 | . . . . . . 7 ⊢ (𝑦 = ∅ → (𝑦 ∩ 𝐴) = (∅ ∩ 𝐴)) | |
6 | 0in 3450 | . . . . . . 7 ⊢ (∅ ∩ 𝐴) = ∅ | |
7 | 5, 6 | eqtrdi 2219 | . . . . . 6 ⊢ (𝑦 = ∅ → (𝑦 ∩ 𝐴) = ∅) |
8 | 7 | eqeq2d 2182 | . . . . 5 ⊢ (𝑦 = ∅ → (𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 = ∅)) |
9 | 4, 8 | rexsn 3627 | . . . 4 ⊢ (∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 = ∅) |
10 | velsn 3600 | . . . 4 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
11 | 9, 10 | bitr4i 186 | . . 3 ⊢ (∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 ∈ {∅}) |
12 | 3, 11 | bitrdi 195 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ 𝑥 ∈ {∅})) |
13 | 12 | eqrdv 2168 | 1 ⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t 𝐴) = {∅}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 ∩ cin 3120 ∅c0 3414 {csn 3583 (class class class)co 5853 ↾t crest 12579 Topctop 12789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-rest 12581 df-top 12790 df-topon 12803 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |