ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restsn GIF version

Theorem restsn 14727
Description: The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
restsn (𝐴𝑉 → ({∅} ↾t 𝐴) = {∅})

Proof of Theorem restsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sn0top 14636 . . . 4 {∅} ∈ Top
2 elrest 13153 . . . 4 (({∅} ∈ Top ∧ 𝐴𝑉) → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴)))
31, 2mpan 424 . . 3 (𝐴𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴)))
4 0ex 4179 . . . . 5 ∅ ∈ V
5 ineq1 3371 . . . . . . 7 (𝑦 = ∅ → (𝑦𝐴) = (∅ ∩ 𝐴))
6 0in 3500 . . . . . . 7 (∅ ∩ 𝐴) = ∅
75, 6eqtrdi 2255 . . . . . 6 (𝑦 = ∅ → (𝑦𝐴) = ∅)
87eqeq2d 2218 . . . . 5 (𝑦 = ∅ → (𝑥 = (𝑦𝐴) ↔ 𝑥 = ∅))
94, 8rexsn 3682 . . . 4 (∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴) ↔ 𝑥 = ∅)
10 velsn 3655 . . . 4 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
119, 10bitr4i 187 . . 3 (∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴) ↔ 𝑥 ∈ {∅})
123, 11bitrdi 196 . 2 (𝐴𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ 𝑥 ∈ {∅}))
1312eqrdv 2204 1 (𝐴𝑉 → ({∅} ↾t 𝐴) = {∅})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  wrex 2486  cin 3169  c0 3464  {csn 3638  (class class class)co 5957  t crest 13146  Topctop 14544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-rest 13148  df-top 14545  df-topon 14558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator