![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > restsn | GIF version |
Description: The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
restsn | ⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t 𝐴) = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn0top 14257 | . . . 4 ⊢ {∅} ∈ Top | |
2 | elrest 12857 | . . . 4 ⊢ (({∅} ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴))) | |
3 | 1, 2 | mpan 424 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴))) |
4 | 0ex 4156 | . . . . 5 ⊢ ∅ ∈ V | |
5 | ineq1 3353 | . . . . . . 7 ⊢ (𝑦 = ∅ → (𝑦 ∩ 𝐴) = (∅ ∩ 𝐴)) | |
6 | 0in 3482 | . . . . . . 7 ⊢ (∅ ∩ 𝐴) = ∅ | |
7 | 5, 6 | eqtrdi 2242 | . . . . . 6 ⊢ (𝑦 = ∅ → (𝑦 ∩ 𝐴) = ∅) |
8 | 7 | eqeq2d 2205 | . . . . 5 ⊢ (𝑦 = ∅ → (𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 = ∅)) |
9 | 4, 8 | rexsn 3662 | . . . 4 ⊢ (∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 = ∅) |
10 | velsn 3635 | . . . 4 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
11 | 9, 10 | bitr4i 187 | . . 3 ⊢ (∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 ∈ {∅}) |
12 | 3, 11 | bitrdi 196 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ 𝑥 ∈ {∅})) |
13 | 12 | eqrdv 2191 | 1 ⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t 𝐴) = {∅}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 ∩ cin 3152 ∅c0 3446 {csn 3618 (class class class)co 5918 ↾t crest 12850 Topctop 14165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-rest 12852 df-top 14166 df-topon 14179 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |