ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrplusgg GIF version

Theorem psrplusgg 14230
Description: The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
psrplusg.s 𝑆 = (𝐼 mPwSer 𝑅)
psrplusg.b 𝐵 = (Base‘𝑆)
psrplusg.a + = (+g𝑅)
psrplusg.p = (+g𝑆)
Assertion
Ref Expression
psrplusgg ((𝐼𝑉𝑅𝑊) → = ( ∘𝑓 + ↾ (𝐵 × 𝐵)))

Proof of Theorem psrplusgg
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrplusg.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2196 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psrplusg.a . . . 4 + = (+g𝑅)
4 eqid 2196 . . . 4 (.r𝑅) = (.r𝑅)
5 eqid 2196 . . . 4 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 eqid 2196 . . . 4 { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 psrplusg.b . . . . 5 𝐵 = (Base‘𝑆)
8 simpl 109 . . . . 5 ((𝐼𝑉𝑅𝑊) → 𝐼𝑉)
9 simpr 110 . . . . 5 ((𝐼𝑉𝑅𝑊) → 𝑅𝑊)
101, 2, 6, 7, 8, 9psrbasg 14227 . . . 4 ((𝐼𝑉𝑅𝑊) → 𝐵 = ((Base‘𝑅) ↑𝑚 { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}))
11 eqid 2196 . . . 4 ( ∘𝑓 + ↾ (𝐵 × 𝐵)) = ( ∘𝑓 + ↾ (𝐵 × 𝐵))
12 eqid 2196 . . . 4 (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥))))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))
13 eqid 2196 . . . 4 (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓)) = (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))
14 eqidd 2197 . . . 4 ((𝐼𝑉𝑅𝑊) → (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})) = (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})))
151, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 8, 9psrval 14220 . . 3 ((𝐼𝑉𝑅𝑊) → 𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}))
1615fveq2d 5562 . 2 ((𝐼𝑉𝑅𝑊) → (+g𝑆) = (+g‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
17 psrplusg.p . . 3 = (+g𝑆)
1817a1i 9 . 2 ((𝐼𝑉𝑅𝑊) → = (+g𝑆))
19 plusgslid 12790 . . 3 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
20 basfn 12736 . . . . . 6 Base Fn V
21 fnpsr 14221 . . . . . . . 8 mPwSer Fn (V × V)
228elexd 2776 . . . . . . . 8 ((𝐼𝑉𝑅𝑊) → 𝐼 ∈ V)
239elexd 2776 . . . . . . . 8 ((𝐼𝑉𝑅𝑊) → 𝑅 ∈ V)
24 fnovex 5955 . . . . . . . 8 (( mPwSer Fn (V × V) ∧ 𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) ∈ V)
2521, 22, 23, 24mp3an2i 1353 . . . . . . 7 ((𝐼𝑉𝑅𝑊) → (𝐼 mPwSer 𝑅) ∈ V)
261, 25eqeltrid 2283 . . . . . 6 ((𝐼𝑉𝑅𝑊) → 𝑆 ∈ V)
27 funfvex 5575 . . . . . . 7 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
2827funfni 5358 . . . . . 6 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
2920, 26, 28sylancr 414 . . . . 5 ((𝐼𝑉𝑅𝑊) → (Base‘𝑆) ∈ V)
307, 29eqeltrid 2283 . . . 4 ((𝐼𝑉𝑅𝑊) → 𝐵 ∈ V)
3130, 30ofmresex 6194 . . . 4 ((𝐼𝑉𝑅𝑊) → ( ∘𝑓 + ↾ (𝐵 × 𝐵)) ∈ V)
32 mpoexga 6270 . . . . 5 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥))))))) ∈ V)
3330, 30, 32syl2anc 411 . . . 4 ((𝐼𝑉𝑅𝑊) → (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥))))))) ∈ V)
34 funfvex 5575 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
3534funfni 5358 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
3620, 23, 35sylancr 414 . . . . 5 ((𝐼𝑉𝑅𝑊) → (Base‘𝑅) ∈ V)
37 mpoexga 6270 . . . . 5 (((Base‘𝑅) ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓)) ∈ V)
3836, 30, 37syl2anc 411 . . . 4 ((𝐼𝑉𝑅𝑊) → (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓)) ∈ V)
39 fnmap 6714 . . . . . . . 8 𝑚 Fn (V × V)
40 nn0ex 9255 . . . . . . . . 9 0 ∈ V
4140a1i 9 . . . . . . . 8 ((𝐼𝑉𝑅𝑊) → ℕ0 ∈ V)
42 fnovex 5955 . . . . . . . 8 (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0𝑚 𝐼) ∈ V)
4339, 41, 22, 42mp3an2i 1353 . . . . . . 7 ((𝐼𝑉𝑅𝑊) → (ℕ0𝑚 𝐼) ∈ V)
44 rabexg 4176 . . . . . . 7 ((ℕ0𝑚 𝐼) ∈ V → { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
4543, 44syl 14 . . . . . 6 ((𝐼𝑉𝑅𝑊) → { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
46 topnfn 12915 . . . . . . . 8 TopOpen Fn V
47 funfvex 5575 . . . . . . . . 9 ((Fun TopOpen ∧ 𝑅 ∈ dom TopOpen) → (TopOpen‘𝑅) ∈ V)
4847funfni 5358 . . . . . . . 8 ((TopOpen Fn V ∧ 𝑅 ∈ V) → (TopOpen‘𝑅) ∈ V)
4946, 23, 48sylancr 414 . . . . . . 7 ((𝐼𝑉𝑅𝑊) → (TopOpen‘𝑅) ∈ V)
50 snexg 4217 . . . . . . 7 ((TopOpen‘𝑅) ∈ V → {(TopOpen‘𝑅)} ∈ V)
5149, 50syl 14 . . . . . 6 ((𝐼𝑉𝑅𝑊) → {(TopOpen‘𝑅)} ∈ V)
52 xpexg 4777 . . . . . 6 (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V ∧ {(TopOpen‘𝑅)} ∈ V) → ({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}) ∈ V)
5345, 51, 52syl2anc 411 . . . . 5 ((𝐼𝑉𝑅𝑊) → ({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}) ∈ V)
54 ptex 12935 . . . . 5 (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}) ∈ V → (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})) ∈ V)
5553, 54syl 14 . . . 4 ((𝐼𝑉𝑅𝑊) → (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})) ∈ V)
5630, 31, 33, 9, 38, 55psrvalstrd 14222 . . 3 ((𝐼𝑉𝑅𝑊) → ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩)
57 plusgndxnn 12789 . . . . 5 (+g‘ndx) ∈ ℕ
58 opexg 4261 . . . . 5 (((+g‘ndx) ∈ ℕ ∧ ( ∘𝑓 + ↾ (𝐵 × 𝐵)) ∈ V) → ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ V)
5957, 31, 58sylancr 414 . . . 4 ((𝐼𝑉𝑅𝑊) → ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ V)
60 snsstp2 3773 . . . . . 6 {⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩} ⊆ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩}
61 ssun1 3326 . . . . . 6 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})
6260, 61sstri 3192 . . . . 5 {⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})
63 snssg 3756 . . . . 5 (⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ V → (⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}) ↔ {⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
6462, 63mpbiri 168 . . . 4 (⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ V → ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}))
6559, 64syl 14 . . 3 ((𝐼𝑉𝑅𝑊) → ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}))
6619, 56, 31, 65opelstrsl 12792 . 2 ((𝐼𝑉𝑅𝑊) → ( ∘𝑓 + ↾ (𝐵 × 𝐵)) = (+g‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
6716, 18, 663eqtr4d 2239 1 ((𝐼𝑉𝑅𝑊) → = ( ∘𝑓 + ↾ (𝐵 × 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {crab 2479  Vcvv 2763  cun 3155  wss 3157  {csn 3622  {ctp 3624  cop 3625   class class class wbr 4033  cmpt 4094   × cxp 4661  ccnv 4662  cres 4665  cima 4666   Fn wfn 5253  cfv 5258  (class class class)co 5922  cmpo 5924  𝑓 cof 6133  𝑟 cofr 6134  𝑚 cmap 6707  Fincfn 6799  1c1 7880  cle 8062  cmin 8197  cn 8990  9c9 9048  0cn0 9249  ndxcnx 12675  Basecbs 12678  +gcplusg 12755  .rcmulr 12756  Scalarcsca 12758   ·𝑠 cvsca 12759  TopSetcts 12761  TopOpenctopn 12911  tcpt 12926   Σg cgsu 12928   mPwSer cmps 14217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-map 6709  df-ixp 6758  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-struct 12680  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-tset 12774  df-rest 12912  df-topn 12913  df-topgen 12931  df-pt 12932  df-psr 14218
This theorem is referenced by:  psradd  14231
  Copyright terms: Public domain W3C validator