Step | Hyp | Ref
| Expression |
1 | | psrplusg.s |
. . . 4
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
2 | | eqid 2193 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | | psrplusg.a |
. . . 4
⊢ + =
(+g‘𝑅) |
4 | | eqid 2193 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
5 | | eqid 2193 |
. . . 4
⊢
(TopOpen‘𝑅) =
(TopOpen‘𝑅) |
6 | | eqid 2193 |
. . . 4
⊢ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
7 | | psrplusg.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑆) |
8 | | simpl 109 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝐼 ∈ 𝑉) |
9 | | simpr 110 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑅 ∈ 𝑊) |
10 | 1, 2, 6, 7, 8, 9 | psrbasg 14159 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝐵 = ((Base‘𝑅) ↑𝑚 {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈
Fin})) |
11 | | eqid 2193 |
. . . 4
⊢ (
∘𝑓 + ↾ (𝐵 × 𝐵)) = ( ∘𝑓 + ↾
(𝐵 × 𝐵)) |
12 | | eqid 2193 |
. . . 4
⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) |
13 | | eqid 2193 |
. . . 4
⊢ (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓)) = (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓)) |
14 | | eqidd 2194 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)})) =
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))) |
15 | 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 8, 9 | psrval 14152 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑆 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉,
〈(.r‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉})) |
16 | 15 | fveq2d 5558 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (+g‘𝑆) =
(+g‘({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}))) |
17 | | psrplusg.p |
. . 3
⊢ ✚ =
(+g‘𝑆) |
18 | 17 | a1i 9 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ✚ =
(+g‘𝑆)) |
19 | | plusgslid 12730 |
. . 3
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
20 | | basfn 12676 |
. . . . . 6
⊢ Base Fn
V |
21 | | fnpsr 14153 |
. . . . . . . 8
⊢ mPwSer
Fn (V × V) |
22 | 8 | elexd 2773 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝐼 ∈ V) |
23 | 9 | elexd 2773 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑅 ∈ V) |
24 | | fnovex 5951 |
. . . . . . . 8
⊢ (( mPwSer
Fn (V × V) ∧ 𝐼
∈ V ∧ 𝑅 ∈ V)
→ (𝐼 mPwSer 𝑅) ∈ V) |
25 | 21, 22, 23, 24 | mp3an2i 1353 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐼 mPwSer 𝑅) ∈ V) |
26 | 1, 25 | eqeltrid 2280 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑆 ∈ V) |
27 | | funfvex 5571 |
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑆 ∈ dom
Base) → (Base‘𝑆)
∈ V) |
28 | 27 | funfni 5354 |
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑆 ∈ V) →
(Base‘𝑆) ∈
V) |
29 | 20, 26, 28 | sylancr 414 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (Base‘𝑆) ∈ V) |
30 | 7, 29 | eqeltrid 2280 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝐵 ∈ V) |
31 | 30, 30 | ofmresex 6189 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ( ∘𝑓 + ↾
(𝐵 × 𝐵)) ∈ V) |
32 | | mpoexga 6265 |
. . . . 5
⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) ∈
V) |
33 | 30, 30, 32 | syl2anc 411 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) ∈
V) |
34 | | funfvex 5571 |
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
35 | 34 | funfni 5354 |
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
36 | 20, 23, 35 | sylancr 414 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (Base‘𝑅) ∈ V) |
37 | | mpoexga 6265 |
. . . . 5
⊢
(((Base‘𝑅)
∈ V ∧ 𝐵 ∈ V)
→ (𝑥 ∈
(Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓)) ∈ V) |
38 | 36, 30, 37 | syl2anc 411 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓)) ∈ V) |
39 | | fnmap 6709 |
. . . . . . . 8
⊢
↑𝑚 Fn (V × V) |
40 | | nn0ex 9246 |
. . . . . . . . 9
⊢
ℕ0 ∈ V |
41 | 40 | a1i 9 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ℕ0 ∈
V) |
42 | | fnovex 5951 |
. . . . . . . 8
⊢ ((
↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V
∧ 𝐼 ∈ V) →
(ℕ0 ↑𝑚 𝐼) ∈ V) |
43 | 39, 41, 22, 42 | mp3an2i 1353 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (ℕ0
↑𝑚 𝐼) ∈ V) |
44 | | rabexg 4172 |
. . . . . . 7
⊢
((ℕ0 ↑𝑚 𝐼) ∈ V → {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
45 | 43, 44 | syl 14 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
46 | | topnfn 12855 |
. . . . . . . 8
⊢ TopOpen
Fn V |
47 | | funfvex 5571 |
. . . . . . . . 9
⊢ ((Fun
TopOpen ∧ 𝑅 ∈ dom
TopOpen) → (TopOpen‘𝑅) ∈ V) |
48 | 47 | funfni 5354 |
. . . . . . . 8
⊢ ((TopOpen
Fn V ∧ 𝑅 ∈ V)
→ (TopOpen‘𝑅)
∈ V) |
49 | 46, 23, 48 | sylancr 414 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (TopOpen‘𝑅) ∈ V) |
50 | | snexg 4213 |
. . . . . . 7
⊢
((TopOpen‘𝑅)
∈ V → {(TopOpen‘𝑅)} ∈ V) |
51 | 49, 50 | syl 14 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → {(TopOpen‘𝑅)} ∈ V) |
52 | | xpexg 4773 |
. . . . . 6
⊢ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V ∧
{(TopOpen‘𝑅)} ∈
V) → ({ℎ ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}) ∈
V) |
53 | 45, 51, 52 | syl2anc 411 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}) ∈
V) |
54 | | ptex 12875 |
. . . . 5
⊢ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}) ∈
V → (∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))
∈ V) |
55 | 53, 54 | syl 14 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))
∈ V) |
56 | 30, 31, 33, 9, 38, 55 | psrvalstrd 14154 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉,
〈(.r‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}) Struct 〈1,
9〉) |
57 | | plusgndxnn 12729 |
. . . . 5
⊢
(+g‘ndx) ∈ ℕ |
58 | | opexg 4257 |
. . . . 5
⊢
(((+g‘ndx) ∈ ℕ ∧ (
∘𝑓 + ↾ (𝐵 × 𝐵)) ∈ V) →
〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉 ∈
V) |
59 | 57, 31, 58 | sylancr 414 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉 ∈ V) |
60 | | snsstp2 3769 |
. . . . . 6
⊢
{〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉} ⊆
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} |
61 | | ssun1 3322 |
. . . . . 6
⊢
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ⊆
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}) |
62 | 60, 61 | sstri 3188 |
. . . . 5
⊢
{〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉} ⊆
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}) |
63 | | snssg 3752 |
. . . . 5
⊢
(〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉 ∈ V →
(〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉 ∈
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}) ↔
{〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉} ⊆
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}))) |
64 | 62, 63 | mpbiri 168 |
. . . 4
⊢
(〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉 ∈ V →
〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉 ∈
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉})) |
65 | 59, 64 | syl 14 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉 ∈ ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉,
〈(.r‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉})) |
66 | 19, 56, 31, 65 | opelstrsl 12732 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ( ∘𝑓 + ↾
(𝐵 × 𝐵)) =
(+g‘({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}))) |
67 | 16, 18, 66 | 3eqtr4d 2236 |
1
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ✚ = (
∘𝑓 + ↾ (𝐵 × 𝐵))) |