| Step | Hyp | Ref
 | Expression | 
| 1 |   | psrplusg.s | 
. . . 4
⊢ 𝑆 = (𝐼 mPwSer 𝑅) | 
| 2 |   | eqid 2196 | 
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 3 |   | psrplusg.a | 
. . . 4
⊢  + =
(+g‘𝑅) | 
| 4 |   | eqid 2196 | 
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 5 |   | eqid 2196 | 
. . . 4
⊢
(TopOpen‘𝑅) =
(TopOpen‘𝑅) | 
| 6 |   | eqid 2196 | 
. . . 4
⊢ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | 
| 7 |   | psrplusg.b | 
. . . . 5
⊢ 𝐵 = (Base‘𝑆) | 
| 8 |   | simpl 109 | 
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝐼 ∈ 𝑉) | 
| 9 |   | simpr 110 | 
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑅 ∈ 𝑊) | 
| 10 | 1, 2, 6, 7, 8, 9 | psrbasg 14227 | 
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝐵 = ((Base‘𝑅) ↑𝑚 {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈
Fin})) | 
| 11 |   | eqid 2196 | 
. . . 4
⊢ (
∘𝑓 + ↾ (𝐵 × 𝐵)) = ( ∘𝑓 + ↾
(𝐵 × 𝐵)) | 
| 12 |   | eqid 2196 | 
. . . 4
⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) | 
| 13 |   | eqid 2196 | 
. . . 4
⊢ (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓)) = (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓)) | 
| 14 |   | eqidd 2197 | 
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)})) =
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))) | 
| 15 | 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 8, 9 | psrval 14220 | 
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑆 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉,
〈(.r‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉})) | 
| 16 | 15 | fveq2d 5562 | 
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (+g‘𝑆) =
(+g‘({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}))) | 
| 17 |   | psrplusg.p | 
. . 3
⊢  ✚ =
(+g‘𝑆) | 
| 18 | 17 | a1i 9 | 
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ✚ =
(+g‘𝑆)) | 
| 19 |   | plusgslid 12790 | 
. . 3
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) | 
| 20 |   | basfn 12736 | 
. . . . . 6
⊢ Base Fn
V | 
| 21 |   | fnpsr 14221 | 
. . . . . . . 8
⊢  mPwSer
Fn (V × V) | 
| 22 | 8 | elexd 2776 | 
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝐼 ∈ V) | 
| 23 | 9 | elexd 2776 | 
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑅 ∈ V) | 
| 24 |   | fnovex 5955 | 
. . . . . . . 8
⊢ (( mPwSer
Fn (V × V) ∧ 𝐼
∈ V ∧ 𝑅 ∈ V)
→ (𝐼 mPwSer 𝑅) ∈ V) | 
| 25 | 21, 22, 23, 24 | mp3an2i 1353 | 
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐼 mPwSer 𝑅) ∈ V) | 
| 26 | 1, 25 | eqeltrid 2283 | 
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑆 ∈ V) | 
| 27 |   | funfvex 5575 | 
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑆 ∈ dom
Base) → (Base‘𝑆)
∈ V) | 
| 28 | 27 | funfni 5358 | 
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑆 ∈ V) →
(Base‘𝑆) ∈
V) | 
| 29 | 20, 26, 28 | sylancr 414 | 
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (Base‘𝑆) ∈ V) | 
| 30 | 7, 29 | eqeltrid 2283 | 
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝐵 ∈ V) | 
| 31 | 30, 30 | ofmresex 6194 | 
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ( ∘𝑓 + ↾
(𝐵 × 𝐵)) ∈ V) | 
| 32 |   | mpoexga 6270 | 
. . . . 5
⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) ∈
V) | 
| 33 | 30, 30, 32 | syl2anc 411 | 
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) ∈
V) | 
| 34 |   | funfvex 5575 | 
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) | 
| 35 | 34 | funfni 5358 | 
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) | 
| 36 | 20, 23, 35 | sylancr 414 | 
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (Base‘𝑅) ∈ V) | 
| 37 |   | mpoexga 6270 | 
. . . . 5
⊢
(((Base‘𝑅)
∈ V ∧ 𝐵 ∈ V)
→ (𝑥 ∈
(Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓)) ∈ V) | 
| 38 | 36, 30, 37 | syl2anc 411 | 
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓)) ∈ V) | 
| 39 |   | fnmap 6714 | 
. . . . . . . 8
⊢ 
↑𝑚 Fn (V × V) | 
| 40 |   | nn0ex 9255 | 
. . . . . . . . 9
⊢
ℕ0 ∈ V | 
| 41 | 40 | a1i 9 | 
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ℕ0 ∈
V) | 
| 42 |   | fnovex 5955 | 
. . . . . . . 8
⊢ ((
↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V
∧ 𝐼 ∈ V) →
(ℕ0 ↑𝑚 𝐼) ∈ V) | 
| 43 | 39, 41, 22, 42 | mp3an2i 1353 | 
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (ℕ0
↑𝑚 𝐼) ∈ V) | 
| 44 |   | rabexg 4176 | 
. . . . . . 7
⊢
((ℕ0 ↑𝑚 𝐼) ∈ V → {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) | 
| 45 | 43, 44 | syl 14 | 
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) | 
| 46 |   | topnfn 12915 | 
. . . . . . . 8
⊢ TopOpen
Fn V | 
| 47 |   | funfvex 5575 | 
. . . . . . . . 9
⊢ ((Fun
TopOpen ∧ 𝑅 ∈ dom
TopOpen) → (TopOpen‘𝑅) ∈ V) | 
| 48 | 47 | funfni 5358 | 
. . . . . . . 8
⊢ ((TopOpen
Fn V ∧ 𝑅 ∈ V)
→ (TopOpen‘𝑅)
∈ V) | 
| 49 | 46, 23, 48 | sylancr 414 | 
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (TopOpen‘𝑅) ∈ V) | 
| 50 |   | snexg 4217 | 
. . . . . . 7
⊢
((TopOpen‘𝑅)
∈ V → {(TopOpen‘𝑅)} ∈ V) | 
| 51 | 49, 50 | syl 14 | 
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → {(TopOpen‘𝑅)} ∈ V) | 
| 52 |   | xpexg 4777 | 
. . . . . 6
⊢ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V ∧
{(TopOpen‘𝑅)} ∈
V) → ({ℎ ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}) ∈
V) | 
| 53 | 45, 51, 52 | syl2anc 411 | 
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}) ∈
V) | 
| 54 |   | ptex 12935 | 
. . . . 5
⊢ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}) ∈
V → (∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))
∈ V) | 
| 55 | 53, 54 | syl 14 | 
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))
∈ V) | 
| 56 | 30, 31, 33, 9, 38, 55 | psrvalstrd 14222 | 
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉,
〈(.r‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}) Struct 〈1,
9〉) | 
| 57 |   | plusgndxnn 12789 | 
. . . . 5
⊢
(+g‘ndx) ∈ ℕ | 
| 58 |   | opexg 4261 | 
. . . . 5
⊢
(((+g‘ndx) ∈ ℕ ∧ (
∘𝑓 + ↾ (𝐵 × 𝐵)) ∈ V) →
〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉 ∈
V) | 
| 59 | 57, 31, 58 | sylancr 414 | 
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉 ∈ V) | 
| 60 |   | snsstp2 3773 | 
. . . . . 6
⊢
{〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉} ⊆
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} | 
| 61 |   | ssun1 3326 | 
. . . . . 6
⊢
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ⊆
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}) | 
| 62 | 60, 61 | sstri 3192 | 
. . . . 5
⊢
{〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉} ⊆
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}) | 
| 63 |   | snssg 3756 | 
. . . . 5
⊢
(〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉 ∈ V →
(〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉 ∈
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}) ↔
{〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉} ⊆
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}))) | 
| 64 | 62, 63 | mpbiri 168 | 
. . . 4
⊢
(〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉 ∈ V →
〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉 ∈
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉})) | 
| 65 | 59, 64 | syl 14 | 
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉 ∈ ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ( ∘𝑓 + ↾
(𝐵 × 𝐵))〉,
〈(.r‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉})) | 
| 66 | 19, 56, 31, 65 | opelstrsl 12792 | 
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ( ∘𝑓 + ↾
(𝐵 × 𝐵)) =
(+g‘({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
∘𝑓 + ↾ (𝐵 × 𝐵))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘𝑟
≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ (({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}))) | 
| 67 | 16, 18, 66 | 3eqtr4d 2239 | 
1
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ✚ = (
∘𝑓 + ↾ (𝐵 × 𝐵))) |