ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrplusgg GIF version

Theorem psrplusgg 14306
Description: The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
psrplusg.s 𝑆 = (𝐼 mPwSer 𝑅)
psrplusg.b 𝐵 = (Base‘𝑆)
psrplusg.a + = (+g𝑅)
psrplusg.p = (+g𝑆)
Assertion
Ref Expression
psrplusgg ((𝐼𝑉𝑅𝑊) → = ( ∘𝑓 + ↾ (𝐵 × 𝐵)))

Proof of Theorem psrplusgg
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrplusg.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2196 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psrplusg.a . . . 4 + = (+g𝑅)
4 eqid 2196 . . . 4 (.r𝑅) = (.r𝑅)
5 eqid 2196 . . . 4 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 eqid 2196 . . . 4 { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 psrplusg.b . . . . 5 𝐵 = (Base‘𝑆)
8 simpl 109 . . . . 5 ((𝐼𝑉𝑅𝑊) → 𝐼𝑉)
9 simpr 110 . . . . 5 ((𝐼𝑉𝑅𝑊) → 𝑅𝑊)
101, 2, 6, 7, 8, 9psrbasg 14303 . . . 4 ((𝐼𝑉𝑅𝑊) → 𝐵 = ((Base‘𝑅) ↑𝑚 { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}))
11 eqid 2196 . . . 4 ( ∘𝑓 + ↾ (𝐵 × 𝐵)) = ( ∘𝑓 + ↾ (𝐵 × 𝐵))
12 eqid 2196 . . . 4 (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥))))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))
13 eqid 2196 . . . 4 (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓)) = (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))
14 eqidd 2197 . . . 4 ((𝐼𝑉𝑅𝑊) → (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})) = (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})))
151, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 8, 9psrval 14296 . . 3 ((𝐼𝑉𝑅𝑊) → 𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}))
1615fveq2d 5565 . 2 ((𝐼𝑉𝑅𝑊) → (+g𝑆) = (+g‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
17 psrplusg.p . . 3 = (+g𝑆)
1817a1i 9 . 2 ((𝐼𝑉𝑅𝑊) → = (+g𝑆))
19 plusgslid 12815 . . 3 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
20 basfn 12761 . . . . . 6 Base Fn V
21 fnpsr 14297 . . . . . . . 8 mPwSer Fn (V × V)
228elexd 2776 . . . . . . . 8 ((𝐼𝑉𝑅𝑊) → 𝐼 ∈ V)
239elexd 2776 . . . . . . . 8 ((𝐼𝑉𝑅𝑊) → 𝑅 ∈ V)
24 fnovex 5958 . . . . . . . 8 (( mPwSer Fn (V × V) ∧ 𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) ∈ V)
2521, 22, 23, 24mp3an2i 1353 . . . . . . 7 ((𝐼𝑉𝑅𝑊) → (𝐼 mPwSer 𝑅) ∈ V)
261, 25eqeltrid 2283 . . . . . 6 ((𝐼𝑉𝑅𝑊) → 𝑆 ∈ V)
27 funfvex 5578 . . . . . . 7 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
2827funfni 5361 . . . . . 6 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
2920, 26, 28sylancr 414 . . . . 5 ((𝐼𝑉𝑅𝑊) → (Base‘𝑆) ∈ V)
307, 29eqeltrid 2283 . . . 4 ((𝐼𝑉𝑅𝑊) → 𝐵 ∈ V)
3130, 30ofmresex 6203 . . . 4 ((𝐼𝑉𝑅𝑊) → ( ∘𝑓 + ↾ (𝐵 × 𝐵)) ∈ V)
32 mpoexga 6279 . . . . 5 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥))))))) ∈ V)
3330, 30, 32syl2anc 411 . . . 4 ((𝐼𝑉𝑅𝑊) → (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥))))))) ∈ V)
34 funfvex 5578 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
3534funfni 5361 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
3620, 23, 35sylancr 414 . . . . 5 ((𝐼𝑉𝑅𝑊) → (Base‘𝑅) ∈ V)
37 mpoexga 6279 . . . . 5 (((Base‘𝑅) ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓)) ∈ V)
3836, 30, 37syl2anc 411 . . . 4 ((𝐼𝑉𝑅𝑊) → (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓)) ∈ V)
39 fnmap 6723 . . . . . . . 8 𝑚 Fn (V × V)
40 nn0ex 9272 . . . . . . . . 9 0 ∈ V
4140a1i 9 . . . . . . . 8 ((𝐼𝑉𝑅𝑊) → ℕ0 ∈ V)
42 fnovex 5958 . . . . . . . 8 (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0𝑚 𝐼) ∈ V)
4339, 41, 22, 42mp3an2i 1353 . . . . . . 7 ((𝐼𝑉𝑅𝑊) → (ℕ0𝑚 𝐼) ∈ V)
44 rabexg 4177 . . . . . . 7 ((ℕ0𝑚 𝐼) ∈ V → { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
4543, 44syl 14 . . . . . 6 ((𝐼𝑉𝑅𝑊) → { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
46 topnfn 12946 . . . . . . . 8 TopOpen Fn V
47 funfvex 5578 . . . . . . . . 9 ((Fun TopOpen ∧ 𝑅 ∈ dom TopOpen) → (TopOpen‘𝑅) ∈ V)
4847funfni 5361 . . . . . . . 8 ((TopOpen Fn V ∧ 𝑅 ∈ V) → (TopOpen‘𝑅) ∈ V)
4946, 23, 48sylancr 414 . . . . . . 7 ((𝐼𝑉𝑅𝑊) → (TopOpen‘𝑅) ∈ V)
50 snexg 4218 . . . . . . 7 ((TopOpen‘𝑅) ∈ V → {(TopOpen‘𝑅)} ∈ V)
5149, 50syl 14 . . . . . 6 ((𝐼𝑉𝑅𝑊) → {(TopOpen‘𝑅)} ∈ V)
52 xpexg 4778 . . . . . 6 (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V ∧ {(TopOpen‘𝑅)} ∈ V) → ({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}) ∈ V)
5345, 51, 52syl2anc 411 . . . . 5 ((𝐼𝑉𝑅𝑊) → ({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}) ∈ V)
54 ptex 12966 . . . . 5 (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}) ∈ V → (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})) ∈ V)
5553, 54syl 14 . . . 4 ((𝐼𝑉𝑅𝑊) → (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})) ∈ V)
5630, 31, 33, 9, 38, 55psrvalstrd 14298 . . 3 ((𝐼𝑉𝑅𝑊) → ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩)
57 plusgndxnn 12814 . . . . 5 (+g‘ndx) ∈ ℕ
58 opexg 4262 . . . . 5 (((+g‘ndx) ∈ ℕ ∧ ( ∘𝑓 + ↾ (𝐵 × 𝐵)) ∈ V) → ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ V)
5957, 31, 58sylancr 414 . . . 4 ((𝐼𝑉𝑅𝑊) → ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ V)
60 snsstp2 3774 . . . . . 6 {⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩} ⊆ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩}
61 ssun1 3327 . . . . . 6 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})
6260, 61sstri 3193 . . . . 5 {⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})
63 snssg 3757 . . . . 5 (⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ V → (⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}) ↔ {⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
6462, 63mpbiri 168 . . . 4 (⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ V → ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}))
6559, 64syl 14 . . 3 ((𝐼𝑉𝑅𝑊) → ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}))
6619, 56, 31, 65opelstrsl 12817 . 2 ((𝐼𝑉𝑅𝑊) → ( ∘𝑓 + ↾ (𝐵 × 𝐵)) = (+g‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
6716, 18, 663eqtr4d 2239 1 ((𝐼𝑉𝑅𝑊) → = ( ∘𝑓 + ↾ (𝐵 × 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {crab 2479  Vcvv 2763  cun 3155  wss 3157  {csn 3623  {ctp 3625  cop 3626   class class class wbr 4034  cmpt 4095   × cxp 4662  ccnv 4663  cres 4666  cima 4667   Fn wfn 5254  cfv 5259  (class class class)co 5925  cmpo 5927  𝑓 cof 6137  𝑟 cofr 6138  𝑚 cmap 6716  Fincfn 6808  1c1 7897  cle 8079  cmin 8214  cn 9007  9c9 9065  0cn0 9266  ndxcnx 12700  Basecbs 12703  +gcplusg 12780  .rcmulr 12781  Scalarcsca 12783   ·𝑠 cvsca 12784  TopSetcts 12786  TopOpenctopn 12942  tcpt 12957   Σg cgsu 12959   mPwSer cmps 14293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-map 6718  df-ixp 6767  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-tset 12799  df-rest 12943  df-topn 12944  df-topgen 12962  df-pt 12963  df-psr 14294
This theorem is referenced by:  psradd  14307
  Copyright terms: Public domain W3C validator