ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrplusgg GIF version

Theorem psrplusgg 14607
Description: The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
psrplusg.s 𝑆 = (𝐼 mPwSer 𝑅)
psrplusg.b 𝐵 = (Base‘𝑆)
psrplusg.a + = (+g𝑅)
psrplusg.p = (+g𝑆)
Assertion
Ref Expression
psrplusgg ((𝐼𝑉𝑅𝑊) → = ( ∘𝑓 + ↾ (𝐵 × 𝐵)))

Proof of Theorem psrplusgg
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrplusg.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2209 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psrplusg.a . . . 4 + = (+g𝑅)
4 eqid 2209 . . . 4 (.r𝑅) = (.r𝑅)
5 eqid 2209 . . . 4 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 eqid 2209 . . . 4 { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 psrplusg.b . . . . 5 𝐵 = (Base‘𝑆)
8 simpl 109 . . . . 5 ((𝐼𝑉𝑅𝑊) → 𝐼𝑉)
9 simpr 110 . . . . 5 ((𝐼𝑉𝑅𝑊) → 𝑅𝑊)
101, 2, 6, 7, 8, 9psrbasg 14603 . . . 4 ((𝐼𝑉𝑅𝑊) → 𝐵 = ((Base‘𝑅) ↑𝑚 { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}))
11 eqid 2209 . . . 4 ( ∘𝑓 + ↾ (𝐵 × 𝐵)) = ( ∘𝑓 + ↾ (𝐵 × 𝐵))
12 eqid 2209 . . . 4 (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥))))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))
13 eqid 2209 . . . 4 (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓)) = (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))
14 eqidd 2210 . . . 4 ((𝐼𝑉𝑅𝑊) → (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})) = (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})))
151, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 8, 9psrval 14595 . . 3 ((𝐼𝑉𝑅𝑊) → 𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}))
1615fveq2d 5607 . 2 ((𝐼𝑉𝑅𝑊) → (+g𝑆) = (+g‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
17 psrplusg.p . . 3 = (+g𝑆)
1817a1i 9 . 2 ((𝐼𝑉𝑅𝑊) → = (+g𝑆))
19 plusgslid 13111 . . 3 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
20 basfn 13057 . . . . . 6 Base Fn V
21 fnpsr 14596 . . . . . . . 8 mPwSer Fn (V × V)
228elexd 2793 . . . . . . . 8 ((𝐼𝑉𝑅𝑊) → 𝐼 ∈ V)
239elexd 2793 . . . . . . . 8 ((𝐼𝑉𝑅𝑊) → 𝑅 ∈ V)
24 fnovex 6007 . . . . . . . 8 (( mPwSer Fn (V × V) ∧ 𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) ∈ V)
2521, 22, 23, 24mp3an2i 1357 . . . . . . 7 ((𝐼𝑉𝑅𝑊) → (𝐼 mPwSer 𝑅) ∈ V)
261, 25eqeltrid 2296 . . . . . 6 ((𝐼𝑉𝑅𝑊) → 𝑆 ∈ V)
27 funfvex 5620 . . . . . . 7 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
2827funfni 5399 . . . . . 6 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
2920, 26, 28sylancr 414 . . . . 5 ((𝐼𝑉𝑅𝑊) → (Base‘𝑆) ∈ V)
307, 29eqeltrid 2296 . . . 4 ((𝐼𝑉𝑅𝑊) → 𝐵 ∈ V)
3130, 30ofmresex 6252 . . . 4 ((𝐼𝑉𝑅𝑊) → ( ∘𝑓 + ↾ (𝐵 × 𝐵)) ∈ V)
32 mpoexga 6328 . . . . 5 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥))))))) ∈ V)
3330, 30, 32syl2anc 411 . . . 4 ((𝐼𝑉𝑅𝑊) → (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥))))))) ∈ V)
34 funfvex 5620 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
3534funfni 5399 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
3620, 23, 35sylancr 414 . . . . 5 ((𝐼𝑉𝑅𝑊) → (Base‘𝑅) ∈ V)
37 mpoexga 6328 . . . . 5 (((Base‘𝑅) ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓)) ∈ V)
3836, 30, 37syl2anc 411 . . . 4 ((𝐼𝑉𝑅𝑊) → (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓)) ∈ V)
39 fnmap 6772 . . . . . . . 8 𝑚 Fn (V × V)
40 nn0ex 9343 . . . . . . . . 9 0 ∈ V
4140a1i 9 . . . . . . . 8 ((𝐼𝑉𝑅𝑊) → ℕ0 ∈ V)
42 fnovex 6007 . . . . . . . 8 (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0𝑚 𝐼) ∈ V)
4339, 41, 22, 42mp3an2i 1357 . . . . . . 7 ((𝐼𝑉𝑅𝑊) → (ℕ0𝑚 𝐼) ∈ V)
44 rabexg 4206 . . . . . . 7 ((ℕ0𝑚 𝐼) ∈ V → { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
4543, 44syl 14 . . . . . 6 ((𝐼𝑉𝑅𝑊) → { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
46 topnfn 13243 . . . . . . . 8 TopOpen Fn V
47 funfvex 5620 . . . . . . . . 9 ((Fun TopOpen ∧ 𝑅 ∈ dom TopOpen) → (TopOpen‘𝑅) ∈ V)
4847funfni 5399 . . . . . . . 8 ((TopOpen Fn V ∧ 𝑅 ∈ V) → (TopOpen‘𝑅) ∈ V)
4946, 23, 48sylancr 414 . . . . . . 7 ((𝐼𝑉𝑅𝑊) → (TopOpen‘𝑅) ∈ V)
50 snexg 4247 . . . . . . 7 ((TopOpen‘𝑅) ∈ V → {(TopOpen‘𝑅)} ∈ V)
5149, 50syl 14 . . . . . 6 ((𝐼𝑉𝑅𝑊) → {(TopOpen‘𝑅)} ∈ V)
52 xpexg 4810 . . . . . 6 (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V ∧ {(TopOpen‘𝑅)} ∈ V) → ({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}) ∈ V)
5345, 51, 52syl2anc 411 . . . . 5 ((𝐼𝑉𝑅𝑊) → ({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}) ∈ V)
54 ptex 13263 . . . . 5 (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}) ∈ V → (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})) ∈ V)
5553, 54syl 14 . . . 4 ((𝐼𝑉𝑅𝑊) → (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})) ∈ V)
5630, 31, 33, 9, 38, 55psrvalstrd 14597 . . 3 ((𝐼𝑉𝑅𝑊) → ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩)
57 plusgndxnn 13110 . . . . 5 (+g‘ndx) ∈ ℕ
58 opexg 4293 . . . . 5 (((+g‘ndx) ∈ ℕ ∧ ( ∘𝑓 + ↾ (𝐵 × 𝐵)) ∈ V) → ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ V)
5957, 31, 58sylancr 414 . . . 4 ((𝐼𝑉𝑅𝑊) → ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ V)
60 snsstp2 3798 . . . . . 6 {⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩} ⊆ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩}
61 ssun1 3347 . . . . . 6 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})
6260, 61sstri 3213 . . . . 5 {⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})
63 snssg 3781 . . . . 5 (⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ V → (⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}) ↔ {⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
6462, 63mpbiri 168 . . . 4 (⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ V → ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}))
6559, 64syl 14 . . 3 ((𝐼𝑉𝑅𝑊) → ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}))
6619, 56, 31, 65opelstrsl 13113 . 2 ((𝐼𝑉𝑅𝑊) → ( ∘𝑓 + ↾ (𝐵 × 𝐵)) = (+g‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
6716, 18, 663eqtr4d 2252 1 ((𝐼𝑉𝑅𝑊) → = ( ∘𝑓 + ↾ (𝐵 × 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  {crab 2492  Vcvv 2779  cun 3175  wss 3177  {csn 3646  {ctp 3648  cop 3649   class class class wbr 4062  cmpt 4124   × cxp 4694  ccnv 4695  cres 4698  cima 4699   Fn wfn 5289  cfv 5294  (class class class)co 5974  cmpo 5976  𝑓 cof 6186  𝑟 cofr 6187  𝑚 cmap 6765  Fincfn 6857  1c1 7968  cle 8150  cmin 8285  cn 9078  9c9 9136  0cn0 9337  ndxcnx 12995  Basecbs 12998  +gcplusg 13076  .rcmulr 13077  Scalarcsca 13079   ·𝑠 cvsca 13080  TopSetcts 13082  TopOpenctopn 13239  tcpt 13254   Σg cgsu 13256   mPwSer cmps 14590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-map 6767  df-ixp 6816  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-mulr 13090  df-sca 13092  df-vsca 13093  df-tset 13095  df-rest 13240  df-topn 13241  df-topgen 13259  df-pt 13260  df-psr 14592
This theorem is referenced by:  psradd  14608
  Copyright terms: Public domain W3C validator