ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsnid GIF version

Theorem lspsnid 14087
Description: A vector belongs to the span of its singleton. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsnid.v 𝑉 = (Base‘𝑊)
lspsnid.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsnid ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))

Proof of Theorem lspsnid
StepHypRef Expression
1 snssi 3776 . . 3 (𝑋𝑉 → {𝑋} ⊆ 𝑉)
2 lspsnid.v . . . 4 𝑉 = (Base‘𝑊)
3 lspsnid.n . . . 4 𝑁 = (LSpan‘𝑊)
42, 3lspssid 14080 . . 3 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
51, 4sylan2 286 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
6 snssg 3766 . . 3 (𝑋𝑉 → (𝑋 ∈ (𝑁‘{𝑋}) ↔ {𝑋} ⊆ (𝑁‘{𝑋})))
76adantl 277 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 ∈ (𝑁‘{𝑋}) ↔ {𝑋} ⊆ (𝑁‘{𝑋})))
85, 7mpbird 167 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wss 3165  {csn 3632  cfv 5268  Basecbs 12751  LModclmod 13967  LSpanclspn 14066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-ndx 12754  df-slot 12755  df-base 12757  df-plusg 12841  df-mulr 12842  df-sca 12844  df-vsca 12845  df-0g 13008  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-grp 13253  df-lmod 13969  df-lssm 14033  df-lsp 14067
This theorem is referenced by:  lspsnel6  14088  lssats2  14094  lspsneli  14095  lspsn  14096  lspsneq0  14106
  Copyright terms: Public domain W3C validator