Step | Hyp | Ref
| Expression |
1 | | ioran 747 |
. . . 4
⊢ (¬
(𝐶 < 𝐴 ∨ 𝐶 < 𝐵) ↔ (¬ 𝐶 < 𝐴 ∧ ¬ 𝐶 < 𝐵)) |
2 | | simp3 994 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈
ℝ) |
3 | | lttri3 7999 |
. . . . . . . . 9
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
4 | 3 | adantl 275 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
5 | | maxabslemval 11172 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) ∈ ℝ ∧ ∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))) |
6 | | 3anass 977 |
. . . . . . . . . . 11
⊢
(((((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) ∈ ℝ ∧ ∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)) ↔ ((((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))) |
7 | 5, 6 | sylib 121 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))) |
8 | | breq1 3992 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → (𝑥 < 𝑦 ↔ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) < 𝑦)) |
9 | 8 | notbid 662 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → (¬ 𝑥 < 𝑦 ↔ ¬ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) < 𝑦)) |
10 | 9 | ralbidv 2470 |
. . . . . . . . . . . 12
⊢ (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) < 𝑦)) |
11 | | breq2 3993 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → (𝑦 < 𝑥 ↔ 𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2))) |
12 | 11 | imbi1d 230 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧) ↔ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))) |
13 | 12 | ralbidv 2470 |
. . . . . . . . . . . 12
⊢ (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))) |
14 | 10, 13 | anbi12d 470 |
. . . . . . . . . . 11
⊢ (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → ((∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))) |
15 | 14 | rspcev 2834 |
. . . . . . . . . 10
⊢
(((((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))) |
16 | 7, 15 | syl 14 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
∃𝑥 ∈ ℝ
(∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))) |
17 | 16 | 3adant3 1012 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) →
∃𝑥 ∈ ℝ
(∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))) |
18 | 4, 17 | suplubti 6977 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )) → ∃𝑧 ∈ {𝐴, 𝐵}𝐶 < 𝑧)) |
19 | 2, 18 | mpand 427 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < sup({𝐴, 𝐵}, ℝ, < ) → ∃𝑧 ∈ {𝐴, 𝐵}𝐶 < 𝑧)) |
20 | | elpri 3606 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝐴, 𝐵} → (𝑧 = 𝐴 ∨ 𝑧 = 𝐵)) |
21 | 20 | adantr 274 |
. . . . . . . 8
⊢ ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝑧 = 𝐴 ∨ 𝑧 = 𝐵)) |
22 | | breq2 3993 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐴 → (𝐶 < 𝑧 ↔ 𝐶 < 𝐴)) |
23 | 22 | biimpcd 158 |
. . . . . . . . . 10
⊢ (𝐶 < 𝑧 → (𝑧 = 𝐴 → 𝐶 < 𝐴)) |
24 | 23 | adantl 275 |
. . . . . . . . 9
⊢ ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝑧 = 𝐴 → 𝐶 < 𝐴)) |
25 | | breq2 3993 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐵 → (𝐶 < 𝑧 ↔ 𝐶 < 𝐵)) |
26 | 25 | biimpcd 158 |
. . . . . . . . . 10
⊢ (𝐶 < 𝑧 → (𝑧 = 𝐵 → 𝐶 < 𝐵)) |
27 | 26 | adantl 275 |
. . . . . . . . 9
⊢ ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝑧 = 𝐵 → 𝐶 < 𝐵)) |
28 | 24, 27 | orim12d 781 |
. . . . . . . 8
⊢ ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → ((𝑧 = 𝐴 ∨ 𝑧 = 𝐵) → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵))) |
29 | 21, 28 | mpd 13 |
. . . . . . 7
⊢ ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) |
30 | 29 | rexlimiva 2582 |
. . . . . 6
⊢
(∃𝑧 ∈
{𝐴, 𝐵}𝐶 < 𝑧 → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) |
31 | 19, 30 | syl6 33 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < sup({𝐴, 𝐵}, ℝ, < ) → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵))) |
32 | 31 | con3d 626 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬
(𝐶 < 𝐴 ∨ 𝐶 < 𝐵) → ¬ 𝐶 < sup({𝐴, 𝐵}, ℝ, < ))) |
33 | 1, 32 | syl5bir 152 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((¬
𝐶 < 𝐴 ∧ ¬ 𝐶 < 𝐵) → ¬ 𝐶 < sup({𝐴, 𝐵}, ℝ, < ))) |
34 | | simp1 992 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈
ℝ) |
35 | 34, 2 | lenltd 8037 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐴)) |
36 | | simp2 993 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈
ℝ) |
37 | 36, 2 | lenltd 8037 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵)) |
38 | 35, 37 | anbi12d 470 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶) ↔ (¬ 𝐶 < 𝐴 ∧ ¬ 𝐶 < 𝐵))) |
39 | 4, 17 | supclti 6975 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) →
sup({𝐴, 𝐵}, ℝ, < ) ∈
ℝ) |
40 | 39, 2 | lenltd 8037 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) →
(sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶 ↔ ¬ 𝐶 < sup({𝐴, 𝐵}, ℝ, < ))) |
41 | 33, 38, 40 | 3imtr4d 202 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶)) |
42 | 41 | imp 123 |
1
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶) |