ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxleast GIF version

Theorem maxleast 11155
Description: The maximum of two reals is a least upper bound. Lemma 3.11 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 22-Dec-2021.)
Assertion
Ref Expression
maxleast (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐶𝐵𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶)

Proof of Theorem maxleast
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioran 742 . . . 4 (¬ (𝐶 < 𝐴𝐶 < 𝐵) ↔ (¬ 𝐶 < 𝐴 ∧ ¬ 𝐶 < 𝐵))
2 simp3 989 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
3 lttri3 7978 . . . . . . . . 9 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
43adantl 275 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
5 maxabslemval 11150 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ ∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
6 3anass 972 . . . . . . . . . . 11 (((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ ∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)) ↔ ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))))
75, 6sylib 121 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))))
8 breq1 3985 . . . . . . . . . . . . . 14 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (𝑥 < 𝑦 ↔ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦))
98notbid 657 . . . . . . . . . . . . 13 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (¬ 𝑥 < 𝑦 ↔ ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦))
109ralbidv 2466 . . . . . . . . . . . 12 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦))
11 breq2 3986 . . . . . . . . . . . . . 14 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (𝑦 < 𝑥𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)))
1211imbi1d 230 . . . . . . . . . . . . 13 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧) ↔ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
1312ralbidv 2466 . . . . . . . . . . . 12 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
1410, 13anbi12d 465 . . . . . . . . . . 11 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ((∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))))
1514rspcev 2830 . . . . . . . . . 10 (((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
167, 15syl 14 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
17163adant3 1007 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
184, 17suplubti 6965 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )) → ∃𝑧 ∈ {𝐴, 𝐵}𝐶 < 𝑧))
192, 18mpand 426 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < sup({𝐴, 𝐵}, ℝ, < ) → ∃𝑧 ∈ {𝐴, 𝐵}𝐶 < 𝑧))
20 elpri 3599 . . . . . . . . 9 (𝑧 ∈ {𝐴, 𝐵} → (𝑧 = 𝐴𝑧 = 𝐵))
2120adantr 274 . . . . . . . 8 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝑧 = 𝐴𝑧 = 𝐵))
22 breq2 3986 . . . . . . . . . . 11 (𝑧 = 𝐴 → (𝐶 < 𝑧𝐶 < 𝐴))
2322biimpcd 158 . . . . . . . . . 10 (𝐶 < 𝑧 → (𝑧 = 𝐴𝐶 < 𝐴))
2423adantl 275 . . . . . . . . 9 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝑧 = 𝐴𝐶 < 𝐴))
25 breq2 3986 . . . . . . . . . . 11 (𝑧 = 𝐵 → (𝐶 < 𝑧𝐶 < 𝐵))
2625biimpcd 158 . . . . . . . . . 10 (𝐶 < 𝑧 → (𝑧 = 𝐵𝐶 < 𝐵))
2726adantl 275 . . . . . . . . 9 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝑧 = 𝐵𝐶 < 𝐵))
2824, 27orim12d 776 . . . . . . . 8 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → ((𝑧 = 𝐴𝑧 = 𝐵) → (𝐶 < 𝐴𝐶 < 𝐵)))
2921, 28mpd 13 . . . . . . 7 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝐶 < 𝐴𝐶 < 𝐵))
3029rexlimiva 2578 . . . . . 6 (∃𝑧 ∈ {𝐴, 𝐵}𝐶 < 𝑧 → (𝐶 < 𝐴𝐶 < 𝐵))
3119, 30syl6 33 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < sup({𝐴, 𝐵}, ℝ, < ) → (𝐶 < 𝐴𝐶 < 𝐵)))
3231con3d 621 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ (𝐶 < 𝐴𝐶 < 𝐵) → ¬ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )))
331, 32syl5bir 152 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((¬ 𝐶 < 𝐴 ∧ ¬ 𝐶 < 𝐵) → ¬ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )))
34 simp1 987 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
3534, 2lenltd 8016 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
36 simp2 988 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
3736, 2lenltd 8016 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
3835, 37anbi12d 465 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐶𝐵𝐶) ↔ (¬ 𝐶 < 𝐴 ∧ ¬ 𝐶 < 𝐵)))
394, 17supclti 6963 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
4039, 2lenltd 8016 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶 ↔ ¬ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )))
4133, 38, 403imtr4d 202 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐶𝐵𝐶) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶))
4241imp 123 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐶𝐵𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 968   = wceq 1343  wcel 2136  wral 2444  wrex 2445  {cpr 3577   class class class wbr 3982  cfv 5188  (class class class)co 5842  supcsup 6947  cr 7752   + caddc 7756   < clt 7933  cle 7934  cmin 8069   / cdiv 8568  2c2 8908  abscabs 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by:  maxleastb  11156  dfabsmax  11159
  Copyright terms: Public domain W3C validator