ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxleast GIF version

Theorem maxleast 11177
Description: The maximum of two reals is a least upper bound. Lemma 3.11 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 22-Dec-2021.)
Assertion
Ref Expression
maxleast (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐶𝐵𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶)

Proof of Theorem maxleast
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioran 747 . . . 4 (¬ (𝐶 < 𝐴𝐶 < 𝐵) ↔ (¬ 𝐶 < 𝐴 ∧ ¬ 𝐶 < 𝐵))
2 simp3 994 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
3 lttri3 7999 . . . . . . . . 9 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
43adantl 275 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
5 maxabslemval 11172 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ ∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
6 3anass 977 . . . . . . . . . . 11 (((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ ∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)) ↔ ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))))
75, 6sylib 121 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))))
8 breq1 3992 . . . . . . . . . . . . . 14 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (𝑥 < 𝑦 ↔ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦))
98notbid 662 . . . . . . . . . . . . 13 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (¬ 𝑥 < 𝑦 ↔ ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦))
109ralbidv 2470 . . . . . . . . . . . 12 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦))
11 breq2 3993 . . . . . . . . . . . . . 14 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (𝑦 < 𝑥𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)))
1211imbi1d 230 . . . . . . . . . . . . 13 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧) ↔ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
1312ralbidv 2470 . . . . . . . . . . . 12 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
1410, 13anbi12d 470 . . . . . . . . . . 11 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ((∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))))
1514rspcev 2834 . . . . . . . . . 10 (((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
167, 15syl 14 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
17163adant3 1012 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
184, 17suplubti 6977 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )) → ∃𝑧 ∈ {𝐴, 𝐵}𝐶 < 𝑧))
192, 18mpand 427 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < sup({𝐴, 𝐵}, ℝ, < ) → ∃𝑧 ∈ {𝐴, 𝐵}𝐶 < 𝑧))
20 elpri 3606 . . . . . . . . 9 (𝑧 ∈ {𝐴, 𝐵} → (𝑧 = 𝐴𝑧 = 𝐵))
2120adantr 274 . . . . . . . 8 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝑧 = 𝐴𝑧 = 𝐵))
22 breq2 3993 . . . . . . . . . . 11 (𝑧 = 𝐴 → (𝐶 < 𝑧𝐶 < 𝐴))
2322biimpcd 158 . . . . . . . . . 10 (𝐶 < 𝑧 → (𝑧 = 𝐴𝐶 < 𝐴))
2423adantl 275 . . . . . . . . 9 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝑧 = 𝐴𝐶 < 𝐴))
25 breq2 3993 . . . . . . . . . . 11 (𝑧 = 𝐵 → (𝐶 < 𝑧𝐶 < 𝐵))
2625biimpcd 158 . . . . . . . . . 10 (𝐶 < 𝑧 → (𝑧 = 𝐵𝐶 < 𝐵))
2726adantl 275 . . . . . . . . 9 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝑧 = 𝐵𝐶 < 𝐵))
2824, 27orim12d 781 . . . . . . . 8 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → ((𝑧 = 𝐴𝑧 = 𝐵) → (𝐶 < 𝐴𝐶 < 𝐵)))
2921, 28mpd 13 . . . . . . 7 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝐶 < 𝐴𝐶 < 𝐵))
3029rexlimiva 2582 . . . . . 6 (∃𝑧 ∈ {𝐴, 𝐵}𝐶 < 𝑧 → (𝐶 < 𝐴𝐶 < 𝐵))
3119, 30syl6 33 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < sup({𝐴, 𝐵}, ℝ, < ) → (𝐶 < 𝐴𝐶 < 𝐵)))
3231con3d 626 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ (𝐶 < 𝐴𝐶 < 𝐵) → ¬ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )))
331, 32syl5bir 152 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((¬ 𝐶 < 𝐴 ∧ ¬ 𝐶 < 𝐵) → ¬ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )))
34 simp1 992 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
3534, 2lenltd 8037 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
36 simp2 993 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
3736, 2lenltd 8037 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
3835, 37anbi12d 470 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐶𝐵𝐶) ↔ (¬ 𝐶 < 𝐴 ∧ ¬ 𝐶 < 𝐵)))
394, 17supclti 6975 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
4039, 2lenltd 8037 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶 ↔ ¬ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )))
4133, 38, 403imtr4d 202 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐶𝐵𝐶) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶))
4241imp 123 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐶𝐵𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141  wral 2448  wrex 2449  {cpr 3584   class class class wbr 3989  cfv 5198  (class class class)co 5853  supcsup 6959  cr 7773   + caddc 7777   < clt 7954  cle 7955  cmin 8090   / cdiv 8589  2c2 8929  abscabs 10961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  maxleastb  11178  dfabsmax  11181
  Copyright terms: Public domain W3C validator