ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxleast GIF version

Theorem maxleast 11357
Description: The maximum of two reals is a least upper bound. Lemma 3.11 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 22-Dec-2021.)
Assertion
Ref Expression
maxleast (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐶𝐵𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶)

Proof of Theorem maxleast
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioran 753 . . . 4 (¬ (𝐶 < 𝐴𝐶 < 𝐵) ↔ (¬ 𝐶 < 𝐴 ∧ ¬ 𝐶 < 𝐵))
2 simp3 1001 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
3 lttri3 8099 . . . . . . . . 9 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
43adantl 277 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
5 maxabslemval 11352 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ ∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
6 3anass 984 . . . . . . . . . . 11 (((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ ∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)) ↔ ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))))
75, 6sylib 122 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))))
8 breq1 4032 . . . . . . . . . . . . . 14 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (𝑥 < 𝑦 ↔ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦))
98notbid 668 . . . . . . . . . . . . 13 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (¬ 𝑥 < 𝑦 ↔ ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦))
109ralbidv 2494 . . . . . . . . . . . 12 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦))
11 breq2 4033 . . . . . . . . . . . . . 14 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (𝑦 < 𝑥𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)))
1211imbi1d 231 . . . . . . . . . . . . 13 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧) ↔ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
1312ralbidv 2494 . . . . . . . . . . . 12 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
1410, 13anbi12d 473 . . . . . . . . . . 11 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ((∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))))
1514rspcev 2864 . . . . . . . . . 10 (((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
167, 15syl 14 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
17163adant3 1019 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
184, 17suplubti 7059 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )) → ∃𝑧 ∈ {𝐴, 𝐵}𝐶 < 𝑧))
192, 18mpand 429 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < sup({𝐴, 𝐵}, ℝ, < ) → ∃𝑧 ∈ {𝐴, 𝐵}𝐶 < 𝑧))
20 elpri 3641 . . . . . . . . 9 (𝑧 ∈ {𝐴, 𝐵} → (𝑧 = 𝐴𝑧 = 𝐵))
2120adantr 276 . . . . . . . 8 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝑧 = 𝐴𝑧 = 𝐵))
22 breq2 4033 . . . . . . . . . . 11 (𝑧 = 𝐴 → (𝐶 < 𝑧𝐶 < 𝐴))
2322biimpcd 159 . . . . . . . . . 10 (𝐶 < 𝑧 → (𝑧 = 𝐴𝐶 < 𝐴))
2423adantl 277 . . . . . . . . 9 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝑧 = 𝐴𝐶 < 𝐴))
25 breq2 4033 . . . . . . . . . . 11 (𝑧 = 𝐵 → (𝐶 < 𝑧𝐶 < 𝐵))
2625biimpcd 159 . . . . . . . . . 10 (𝐶 < 𝑧 → (𝑧 = 𝐵𝐶 < 𝐵))
2726adantl 277 . . . . . . . . 9 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝑧 = 𝐵𝐶 < 𝐵))
2824, 27orim12d 787 . . . . . . . 8 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → ((𝑧 = 𝐴𝑧 = 𝐵) → (𝐶 < 𝐴𝐶 < 𝐵)))
2921, 28mpd 13 . . . . . . 7 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝐶 < 𝐴𝐶 < 𝐵))
3029rexlimiva 2606 . . . . . 6 (∃𝑧 ∈ {𝐴, 𝐵}𝐶 < 𝑧 → (𝐶 < 𝐴𝐶 < 𝐵))
3119, 30syl6 33 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < sup({𝐴, 𝐵}, ℝ, < ) → (𝐶 < 𝐴𝐶 < 𝐵)))
3231con3d 632 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ (𝐶 < 𝐴𝐶 < 𝐵) → ¬ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )))
331, 32biimtrrid 153 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((¬ 𝐶 < 𝐴 ∧ ¬ 𝐶 < 𝐵) → ¬ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )))
34 simp1 999 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
3534, 2lenltd 8137 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
36 simp2 1000 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
3736, 2lenltd 8137 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
3835, 37anbi12d 473 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐶𝐵𝐶) ↔ (¬ 𝐶 < 𝐴 ∧ ¬ 𝐶 < 𝐵)))
394, 17supclti 7057 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
4039, 2lenltd 8137 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶 ↔ ¬ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )))
4133, 38, 403imtr4d 203 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐶𝐵𝐶) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶))
4241imp 124 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐶𝐵𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2164  wral 2472  wrex 2473  {cpr 3619   class class class wbr 4029  cfv 5254  (class class class)co 5918  supcsup 7041  cr 7871   + caddc 7875   < clt 8054  cle 8055  cmin 8190   / cdiv 8691  2c2 9033  abscabs 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143
This theorem is referenced by:  maxleastb  11358  dfabsmax  11361
  Copyright terms: Public domain W3C validator