ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfibg GIF version

Theorem shftfibg 10315
Description: Value of a fiber of the relation 𝐹. (Contributed by Jim Kingdon, 15-Aug-2021.)
Assertion
Ref Expression
shftfibg ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))

Proof of Theorem shftfibg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 945 . . . . 5 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
2 simp1 944 . . . . 5 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐹𝑉)
3 simp3 946 . . . . 5 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
4 shftfvalg 10313 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐹𝑉) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
54breqd 3862 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐹𝑉) → (𝐵(𝐹 shift 𝐴)𝑧𝐵{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑧))
6 vex 2623 . . . . . . 7 𝑧 ∈ V
7 eleq1 2151 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥 ∈ ℂ ↔ 𝐵 ∈ ℂ))
8 oveq1 5673 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑥𝐴) = (𝐵𝐴))
98breq1d 3861 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝑥𝐴)𝐹𝑦 ↔ (𝐵𝐴)𝐹𝑦))
107, 9anbi12d 458 . . . . . . . 8 (𝑥 = 𝐵 → ((𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑦)))
11 breq2 3855 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐵𝐴)𝐹𝑦 ↔ (𝐵𝐴)𝐹𝑧))
1211anbi2d 453 . . . . . . . 8 (𝑦 = 𝑧 → ((𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
13 eqid 2089 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
1410, 12, 13brabg 4105 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑧 ∈ V) → (𝐵{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
156, 14mpan2 417 . . . . . 6 (𝐵 ∈ ℂ → (𝐵{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
165, 15sylan9bb 451 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹𝑉) ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
171, 2, 3, 16syl21anc 1174 . . . 4 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
18173anibar 1112 . . 3 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵𝐴)𝐹𝑧))
1918abbidv 2206 . 2 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → {𝑧𝐵(𝐹 shift 𝐴)𝑧} = {𝑧 ∣ (𝐵𝐴)𝐹𝑧})
20 imasng 4810 . . 3 (𝐵 ∈ ℂ → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧𝐵(𝐹 shift 𝐴)𝑧})
21203ad2ant3 967 . 2 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧𝐵(𝐹 shift 𝐴)𝑧})
223, 1subcld 7854 . . 3 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
23 imasng 4810 . . 3 ((𝐵𝐴) ∈ ℂ → (𝐹 “ {(𝐵𝐴)}) = {𝑧 ∣ (𝐵𝐴)𝐹𝑧})
2422, 23syl 14 . 2 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 “ {(𝐵𝐴)}) = {𝑧 ∣ (𝐵𝐴)𝐹𝑧})
2519, 21, 243eqtr4d 2131 1 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 925   = wceq 1290  wcel 1439  {cab 2075  Vcvv 2620  {csn 3450   class class class wbr 3851  {copab 3904  cima 4455  (class class class)co 5666  cc 7409  cmin 7714   shift cshi 10309
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-resscn 7498  ax-1cn 7499  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-addcom 7506  ax-addass 7508  ax-distr 7510  ax-i2m1 7511  ax-0id 7514  ax-rnegex 7515  ax-cnre 7517
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-sub 7716  df-shft 10310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator