ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfibg GIF version

Theorem shftfibg 10964
Description: Value of a fiber of the relation 𝐹. (Contributed by Jim Kingdon, 15-Aug-2021.)
Assertion
Ref Expression
shftfibg ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))

Proof of Theorem shftfibg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1000 . . . . 5 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
2 simp1 999 . . . . 5 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐹𝑉)
3 simp3 1001 . . . . 5 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
4 shftfvalg 10962 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐹𝑉) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
54breqd 4040 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐹𝑉) → (𝐵(𝐹 shift 𝐴)𝑧𝐵{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑧))
6 vex 2763 . . . . . . 7 𝑧 ∈ V
7 eleq1 2256 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥 ∈ ℂ ↔ 𝐵 ∈ ℂ))
8 oveq1 5925 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑥𝐴) = (𝐵𝐴))
98breq1d 4039 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝑥𝐴)𝐹𝑦 ↔ (𝐵𝐴)𝐹𝑦))
107, 9anbi12d 473 . . . . . . . 8 (𝑥 = 𝐵 → ((𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑦)))
11 breq2 4033 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐵𝐴)𝐹𝑦 ↔ (𝐵𝐴)𝐹𝑧))
1211anbi2d 464 . . . . . . . 8 (𝑦 = 𝑧 → ((𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
13 eqid 2193 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
1410, 12, 13brabg 4299 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑧 ∈ V) → (𝐵{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
156, 14mpan2 425 . . . . . 6 (𝐵 ∈ ℂ → (𝐵{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
165, 15sylan9bb 462 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹𝑉) ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
171, 2, 3, 16syl21anc 1248 . . . 4 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
18173anibar 1167 . . 3 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵𝐴)𝐹𝑧))
1918abbidv 2311 . 2 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → {𝑧𝐵(𝐹 shift 𝐴)𝑧} = {𝑧 ∣ (𝐵𝐴)𝐹𝑧})
20 imasng 5030 . . 3 (𝐵 ∈ ℂ → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧𝐵(𝐹 shift 𝐴)𝑧})
21203ad2ant3 1022 . 2 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧𝐵(𝐹 shift 𝐴)𝑧})
223, 1subcld 8330 . . 3 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
23 imasng 5030 . . 3 ((𝐵𝐴) ∈ ℂ → (𝐹 “ {(𝐵𝐴)}) = {𝑧 ∣ (𝐵𝐴)𝐹𝑧})
2422, 23syl 14 . 2 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 “ {(𝐵𝐴)}) = {𝑧 ∣ (𝐵𝐴)𝐹𝑧})
2519, 21, 243eqtr4d 2236 1 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  {cab 2179  Vcvv 2760  {csn 3618   class class class wbr 4029  {copab 4089  cima 4662  (class class class)co 5918  cc 7870  cmin 8190   shift cshi 10958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192  df-shft 10959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator